2021 IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST) | 978-1-6654-4571-9/21/$31.00 ©2021 IEEE | DOI: 10.1109/SBST52555.2021.00015

2021 IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST)

UtBot at the SBST2021 Tool Competition

1% Dmitry Ivanov
Software Analysis Team
Huawei, Russian Research Institute
St. Petersburg, Russia
dmitry.ivanov @huawei.com

4™ Arsen Nagdalian
Software Analysis Team
Huawei, Russian Research Institute
St. Petersburg, Russia
nagdalian.arsen @huawei.com

Abstract—UtBot is an automatic test generator for Java pro-
grams developed by Huawei and based on symbolic execution. It
tries to cover as many branches as possible using the program’s
bytecode. To do that UtBot analyzes paths in the control flow
graph of a given method, constructing constraints for them, and
tries to find satisfying input values using SMT-solver to cover
corresponding branches. In this paper, we report the results of
UtBot at the ninth edition of the SBST 2021 tool competition.

I. INTRODUCTION

Regression testing is a well-known and commonly used
technique that allows developers to make sure their changes
don’t break the existing logic. To simplify the process of
writing tests, we are developing an automatic test generator
named UtBot, which produces tests for a given Java program.
It uses the program’s control flow graph to collect constraints
for each possible execution path and tries to cover them with
test cases. As we can see from the results of the SBST
2021 tool competition [3], UtBot gives the best coverage and
mutation score of all symbolic (and concolic) engines that have
participated in the contest.

II. UTBOT DESCRIPTION

UtBot is a symbolic execution based test generation tool. It
automatically produces a set of JUnit tests for a given class or
its methods. To do that, the tool requires a Java classpath with
all compiled dependencies. UtBot provides an IntelliJ plugin
along with a command-line interface. Table I contains the main
information about the generator.

III. IMPLEMENTATION DETAILS

Since UtBot has a symbolic execution engine at its core,
it has to analyze multiple execution paths extracted from the
program’s bytecode. We use Jimple [2] provided by Soot to
get a more simple representation of bytecode significantly
decreasing the number of instructions. Having obtained a
control flow graph (CFG) from the bytecode, we use it to get
all the possible execution paths. For each of them, we build a
set of constraints that are used by z3 (SMT-solver by Microsoft

978-1-6654-4571-9/21/$31.00 ©2021 IEEE
DOI 10.1109/SBST52555.2021.00015

2™ Nikolay Bukharev
Software Analysis Team
Huawei, Russian Research Institute
St. Petersburg, Russia
bukharev.nikolay @huawei.com

5% Gleb Stromov
Software Analysis Team
Huawei, Russian Research Institute
St. Petersburg, Russia
stromov.gleb@huawei.com

37 Alexey Menshutin
Software Analysis Team
Huawei, Russian Research Institute
St. Petersburg, Russia
menshutin.alexey @huawei.com

6™ Artem Ustinov
Software Analysis Team
Huawei, Russian Research Institute
St. Petersburg, Russia
ustinov.artem1 @huawei.com

TABLE I
MAIN INFORMATION ABOUT UTBOT

Prerequisites

Static or dynamic Static

Software type Java classes
Lifecycle phase Unit testing for Java program
Java 8/Java 11

JUnit 4

No specific experience required

Environment
Knowledge required

Experience required

Input and output of the tool

Input Classpath with all dependencies

Output Set of test cases

Operation

Interaction CLI, IntelliJ plugin
User guidance —

Source of information —
Maturity Being developed since September 2020

Technology behind the tool | Symbolic execution

Obtaining the tool and information

License Proprietary prototype
Cost —
Support None

Empirical evidence about the tool

Effectiveness, Scalability ‘ —

[1]) to determine if our path conditions are satisfiable. If they
are, we can construct input values from the found model and
create a test case that covers the desired branch of the program.

A few words about our memory and type systems. We
heavily rely on the array and bit-vectors theories to repre-
sent symbolic memory. Every Java object in our program is
represented by its address and type. Class fields are stored in
z3 arrays that contain either addresses or values of objects’
fields depending on whether a field is a reference value or
not. It allows us to process cases where some objects are
equal by reference (so-called memory aliasing). All objects

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

TABLE 11
RESULTS OF UTBOT ON THE SBST BENCHMARK CLASSES

Benchmark Java Class Line Coverage Branch Coverage Mutants Coverage Mutants Killed
60s 120s 300s 60s 120s 300s 60s 120s 300s 60s 120s 300s
GUAVA-46 com.google.common.collect. MinMaxPriorityQueue 24.7% 30.2% 30.2% 25.8% 30.2% 30.2% 38.3% 42.7% 42.7% 38.3% 42.7% 42.7%
GUAVA-134 com.google.common.collect.Ordering 19.0% 23.0% 23.0% 12.0% 25.0% 25.0% 22.3% 29.9% 29.9% 22.3% 29.9% 29.9%
GUAVA-181 com.google.common.cache.CacheStats 81.0% 81.0% 81.0% 100.0% 100.0% 100.0% 96.1% 96.1% 96.1% 96.1% 96.1% 96.1%
GUAVA-128 com.google.common.net.MediaType 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
GUAVA-71 com.google.common.escape.Escapers 78.6% 78.6% 18.6% 66.7% 66.7% 66.7% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9%
GUAVA-273 com.google.common.collect. TreeRangeMap 8.6% 13.7% 13.0% 3.7% 80% 7.7% 9.5% 14.8% 14.6% 9.5% 14.8% 14.6%
GUAVA-254 com.google.common.hash.HashCode 65.1% 65.1% 65.1% 50.0% 50.0% 50.0% 56.1% 56.1% 56.1% 56.1% 56.1% 56.1%
GUAVA-237 com.google.common.hash.Hashing 23.9% 34.1% 34.1% 21.0% 30.0% 30.0% 29.6% 37.5% 37.5% 29.6% 37.5% 37.5%
GUAVA-192 com.google.common.reflect. TypeToken 59% 7.0% 7.0% 26% 26% 2.6% 71% 82% 82% 7.1% 82% 8.2%
GUAVA-200 com.google.common.util.concurrent. MoreExecutors 5.2% 6.2% 13.0% 22% 32% 5.1% 63% 8.0% 13.7% 6.3% 8.0% 13.7%
GUAVA-108 com.google.common.collect.Range 38.0% 46.3% 48.1% 21.7% 42.3% 47.6% 43.7% 58.4% 62.1% 43.7% 58.4% 62.1%
GUAVA-11 com.google.common.collect. MapMaker 31.9% 31.9% 31.9% 50.0% 50.0% 50.0% 56.1% 56.1% 56.1% 56.1% 56.1% 56.1%
Average 31.8% 34.8% 35.4% 29.6% 34.0% 34.6% 38.0% 41.6% 42.3% 38.0% 41.5% 42.3%

are represented in the form of constraints on the cells of arrays
of symbolic memory corresponding to their fields. Those
constraints are stored in the SMT-solver. The type system also
uses the described symbolic memory.

We strive to cover only reachable instructions of the source
code. That is why we have to run our tests to make sure
we have generated test cases with valid assertions. Due to
a similar reason, we have decided not to use mocks. Tests
that employ mocking may potentially cover unreachable code,
which would increase code coverage but does not make any
sense in terms of software testing.

IV. BENCHMARK RESULTS

Table II demonstrates the results of UtBot achieved on the
competition’s benchmarks [3] for each of the given time bud-
gets. The produced coverage values vary for different classes.
In some cases, coverage reaches the level of 80 — 100%. In
other cases, the results are lower. In the following sections, we
describe the issues that could lead to the low coverage values
for some of the classes.

A. Time limitations

An important factor is the limitations imposed by the time
budgets. The symbolic execution technique is inherently time-
consuming and that is why in many cases it requires more time
in order to achieve better results. To mitigate this problem we
have decided to split time budgets into two equal parts. The
first part is equally distributed between all methods so that
each of them gets some portion of the time. The second part
is used to run tests for methods in an arbitrary order.

B. Technical issues

First of all, the results table states that all coverage metrics
for the class com.google.common.net .MediaType are

35

zero. However, we could not reproduce this result. In our local
launches, we have achieved 25% branch coverage for this
class. To calculate coverage we applied the JaCoCo Gradle
plugin and used it to automatically generate HTML coverage
reports each time our test classes are launched.

One other aspect that affects the time consumption of our
engine is the requests to the SMT-solver. In some cases they
can take significant time, so we have made a temporary
decision to use timeouts for each request.

Another issue that could have caused some problems in-
volves static fields. Although it will be fixed once the engine
starts providing the code generator with certain static fields-
specific information.

There are several other bugs in our tool that we are aware
of. Some of them have already been fixed and the rest will
also be corrected shortly.

V. CONCLUSION

Although UtBot has shown the best result of all participants
using symbolic execution technique, there is still a vast amount
of opportunities to improve our tool in the future. Right now
the bottleneck of the engine is its performance and our primary
goal is to speed up its work. To do it, we can include concrete
execution into our analysis to make our engine concolic.

REFERENCES

[1] Getting started with z3: A guide. https://rise4fun.com/z3/tutorial/guide.
Accessed: 2021-03-10.

[2] Arni Einarsson and Janus Dam Nielsen.
program analysis with soot. 2008.

[3] Sebastiano Panichella, Alessio Gambi, Fiorella Zampetti, and Vincenzo
Riccio. Sbst tool competition 2021. In International Conference on
Software Engineering, Workshops, Madrid, Spain, 2021. ACM, 2021.

A survivor’s guide to java

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

