
SBST Tool Competition 2022

Alessio Gambi
alessio.gambi@uni-passau.de

University of Passau, Germany

Gunel Jahangirova
gunel.jahangirova@usi.ch

Software Institute - USI, Switzerland

Vincenzo Riccio
vincenzo.riccio@usi.ch

Software Institute - USI, Switzerland

Fiorella Zampetti
fiorella.zampetti@unisannio.it

University of Sannio, Italy

ABSTRACT

We report on the organization, challenges, and results of the tenth

edition of the Java Unit Testing Competition as well as the second

edition of the Cyber-Physical Systems (CPS) Testing Competition.

Java Unit Testing Competition. Seven tools, i.e., BBC, EvoSuite,

Kex, Kex-Reflection, Randoop, UTBot, and UTBot-Mocks, were

executed on a benchmark with 65 classes sampled from four open-

source Java projects, for two time budgets: 30 and 120 seconds.

CPS Testing Tool Competition. Six tools, i.e., AdaFrenetic, Am-

bieGen, FreneticV, GenRL, EvoMBT and WOGAN competed on

testing two driving agents by generating simulation-based tests.

We considered one configuration for each test subject and evaluated

the tools’ effectiveness and efficiency as well as the failure diversity.

This paper describes our methodology, the statistical analysis of

the results together with the competing tools, and the challenges

faced while running the competition experiments.

CCS CONCEPTS

• Software and its engineering → Search-based software engi-

neering; Automatic programming; Software testing and de-

bugging.

KEYWORDS

Tool Competition, Software Testing, Test Case Generation, Unit

Testing, Java, Cyber-Physical Systems, Autonomous Vehicles, Search

Based Software Engineering

ACM Reference Format:

Alessio Gambi, Gunel Jahangirova, Vincenzo Riccio, and Fiorella Zampetti.

2022. SBST Tool Competition 2022. In The 15th Search-Based Software Testing

Workshop (SBST’22), May 9, 2022, Pittsburgh, PA, USA. ACM, New York, NY,

USA, 8 pages. https://doi.org/10.1145/3526072.3527538

1 INTRODUCTION

This year we organized the tenth edition of the SBST Tool Competi-

tion. The competition has the goal to experiment with testing tools

for a diversified set of systems and domains. As for recent years, we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBST’22 , May 9, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9318-8/22/05. . . $15.00
https://doi.org/10.1145/3526072.3527538

invited researchers to participate in the competition with their unit

test generation tools for Java and system test generation tools for

Cyber-Physical Systems (CPSs). Java testing tools are evaluated

against a benchmark with respect to code and mutation coverage,

whereas CPS testing tools are evaluated against self-driving cars

software in a simulation environment.

Report Structure: Section 2 and Section 3, report the organi-

zation, challenges, and results of the JUnit and CPS testing tool

competitions.

2 THE JUNIT TESTING COMPETITION

The tenth edition of the Java Testing Tool Competition received

the highest (six) number of submitted tools, namely BBC [5], Evo-

Suite [17], Kex [3], Kex-Reflection [6], UTBot [7] and UTBot-Mocks.

Furthermore, similarly to previous editions, we used Randoop [29]

as a baseline for comparison.

Each tool has been executed on 65 classes under test (CUTs)

sampled from four out of six projects used also in the previous

edition [31]. Starting from the results of the previous edition, we

realized that the tools used for coverage and mutation analysis are

not able to properly work on projects relying on a recent version

of Java. For this reason, we relied on the four projects for which

we can obtain both code and mutation coverage.

The competing tools have been compared by using line, branch

and mutant coverage metrics, for two different time budgets, i.e.,

30 and 120 seconds.

In order to guarantee a fair comparison among the competing

tools, the execution of the tools for generating test suites and their

evaluation, has been carried out by using a dockerized infrastruc-

ture [15] hosted on GitHub at:

https://github.com/JUnitContest/junitcontest.

The remainder of the JUnit testing competition report is struc-

tured as follows. Section 2.1 describes the benchmark being adopted

once having described the selection criteria. Section 2.2 briefly de-

scribes the competing tools, while Section 2.3 presents the method-

ology for running the competition. Section 2.4, instead, reports and

discusses the results. Finally, Section 2.5 concludes the report with

remarks and ideas for future improvements.

2.1 The benchmark subjects of the JUnit
Testing Competition

Similarly to previous editions, the selection of the projects and

classes under test (CUTs) to use as benchmark for test case genera-

tion has been done by considering three criteria: (i) projects must

belong to different application domains [17]; (ii) projects must be

25

2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST)

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 28,2022 at 08:01:28 UTC from IEEE Xplore. Restrictions apply.

SBST’22 , May 9, 2022, Pittsburgh, PA, USA Alessio Gambi, Gunel Jahangirova, Vincenzo Riccio, and Fiorella Zampetti

Table 1: Description of the 10th edition of the benchmark.

Project # Cand. CUTs # Sampled CUTs

FastJSON 105 20

Guava 277 15

Seata 33 10

Spoon 169 15

Total 584 65

open-source for replicability purposes; and (iii) classes must not

be trivial, i.e., the whole set of methods belonging to a class must

have a McCabe’s cyclomatic complexity higher than five, as well

as, the class must contain at least one branch [30].

We focused on GitHub projects relying on Maven as build frame-

work, and including JUnit41 test suites. Considering that, for the

ninth edition [31] there were classes in the benchmark for which it

was not possible to compute line, branch and mutant coverage met-

rics, we choose to identify the root cause behind that behaviour and

we fixed it. For this reason, we considered four out of six projects

from the ninth edition [31], by using a version for which it was

possible to compute the metrics used for comparison. Specifically,

we picked:

• FastJSON (v1.2.50) (https://github.com/alibaba/fastjson): a

Java library to convert Java Objects into their JSON repre-

sentation, as well as, a JSON string to an equivalent Java

object;

• Guava (v26.0) (https://github.com/google/guava): a set of

core Java libraries from Google, widely used on most Java

projects within Google;

• Seata (v0.5) (https://github.com/seata/seata): an easy-to-use,

highly performing distributed transaction solution;

• Spoon (v7.0) (https://github.com/INRIA/spoon): a meta pro-

gramming library to analyze and transform Java source code.

Based on the time and resources available for running out the

competition, as well as, considering the high number of competing

tools, we have only sampled a limited number of CUTs using the

approach adopted in the ninth edition [31]. Specifically, we relied

on javancss2 to identify for each production class in the system, the

number of methods, and for each method its McCabe’s cyclomatic

complexity. Then, we filtered out all the classes that are non-testable

(i.e., classes for which Randoop is not able to generate any test case

using the time budget of 10 seconds), and classes for which at least

one method has a McCabe’s cyclomatic complexity lower than five.

As a result, we obtained a set made up of 584 candidate classes, from

which we randomly sampled 65 classes to use as our benchmark

(as shown in Table 1).

2.2 JUnit Testing Competing Tools

Seven tools are competing in the tenth edition: BBC [5], Evo-

Suite [17], Kex [3], Kex-Reflection [6], Randoop [29], UTBot [7] and

UTBot-Mocks.

BBC (Basic Block Coverage) [5] is a search-based unit test gener-

ation technique relying on EvoSuite [17]. Unlike the approach level

and branch distance, which considers only information related to

the coverage of explicit branches coming from conditional and loop

1https://github.com/junit-team/junit4
2https://github.com/nokia/javancss

statements, BBC also takes into account implicit branching (e.g., a

run-time exception thrown in a branch-less method) denoted by

the coverage level of relevant basic blocks in a control flow graph

to drive the search process.

EvoSuite [17] uses evolutionary search to automatically gener-

ate test suites that aim tomaximise code coverage. The test cases are

represented in a genetic encoding consisting of variable-length se-

quences of Java statements. Standard evolutionary search operators

such as selection, crossover, mutation are adapted to this represen-

tation. The current default evolutionary algorithm of EvoSuite is

Dynamic Many-Objective Sorting Algorithm (DynaMOSA) [30].

Furthermore, EvoSuite aims to generate test cases that are readable

and free of test smells by applying a post-processing procedure that

minimizes the generated test suite.

Kex [3], a tool implemented by JetBrains Research, works as

a symbolic execution engine and uses the Satisfability Modulo

Theory (STM) solver to perform the constraint solving. Specifically,

by analyzing jar files, it constructs the control flow graph for each

method and tries to cover each basic block in each method by

generating sufficient input data. Finally, by using a novel backward

search algorithm, namely Reanimator, Kex generates valid test cases

from generated input parameters. Kex-Reflection [6], instead, is

a Kex variant that uses Java reflection library and Unsafe API to

generate test cases (instead of Reanimator approach used in Kex).

Randoop, used as a baseline in the context of the competition,

generates unit tests using a feedback-directed random test genera-

tion, and collecting information from the execution of the tests as

they are generated to reduce the number of redundant and illegal

tests [29].

Finally, UTBot [7] is a tool implemented by Huawei Research

that relies on symbolic execution to extract the information about

the execution paths identified inside the method to derive the con-

straints that need to be met for traversing a desired path. By using

the SMT solver, UTBot builds a model (i.e., a set of parameter values

for the method under test) satisfying the above constraints with the

aim of finding a model satisfying all possible execution paths of the

method under test. UTBot-mocks, instead, is a variant of UTBot

that relies on mocks for test case generation. Specifically, differently

from UTBot, it mocks everything that does not belong to the Class

Under Test (CUT), and it does not run a concrete execution.

2.3 Methodology of the JUnit Testing
Competition

The methodology followed to run the competition is similar to the

one adopted in the ninth edition [31]. It is important to remark

that, due to time and resource constraints, and the high number of

competing tools (six plus Randoop as baseline), we only considered

two time budgets: 30 and 120 seconds.

Public contest repository. The complete contest infrastructure

is released under a GPL-3.0 license and is available on GitHub [1].

Specifically, the repository contains the set of CUTs contributing

to the tenth edition, as well as, the detailed summary of the results

obtained by running each tool for each time budget.

Test generation and time budget. For each time budget, each

tool has been executed ten times against each CUT to account for

the randomness of the test case generation process [9].

26

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 28,2022 at 08:01:28 UTC from IEEE Xplore. Restrictions apply.

SBST Tool Competition 2022 SBST’22 , May 9, 2022, Pittsburgh, PA, USA

Execution environment. The infrastructure performed a total

of 9,100 executions, i.e., 65 CUTs x 7 tools x 2 time budgets x 10

repetitions, to use for statistical analysis. For all the competing

tools, we were able to run the planned number of executions.

To ensure a fair comparison, we ran each tool on the same dedi-

cated machine, i.e., Google Cloud e2-highmem-8 virtual machine

instances equipped with 8 vCPUs, 64 GB of RAM and 50 GB of

memory. The dockerized version of the infrastructure, as well as

the access to Google Cloud virtual machine instances allowed us to

distribute the execution of the tools to different machines. We used

a dedicated instance for each tool and time budget, employing 14 vir-

tual machines instances overall. When selecting the configuration

parameters of these instances we took into account the problems

experienced in the previous edition [31], such as insufficient RAM

and disk space.

Metrics computation.We compared the performance of the

competing tools based on line, branch and mutation coverage met-

rics. Specifically, to compute both line and branch coverage metrics,

we relied on JaCoCo [2], an open-source toolkit for measuring

and reporting Java code coverage. For mutation analysis, instead,

we relied on PITest [4], considering five minutes as the maximum

amount of time available for mutation analysis for each CUT, and a

timeout of one minute for each mutant being generated. Among all

the mutants being generated by PITest, for CUTs with more than

200 mutants we randomly sampled only 33% of them, while for

CUTs with more than 400 mutants we sampled 50% of them for the

analysis.

Statistical analysis. Statistical tests are used to support the

obtained results. Specifically, we use the Friedman test [38], a non-

parametric statistical test, to detect differences in treatments across

multiple test attempts, i.e., for assessing whether the scores over

the different CUTs and time budgets achieved by the competitors

tools are significantly different from each other. On top of this, we

also computed the post-hoc Conover’s test [35] to determine for

which pair of tools the significance actually holds, once having

adjusted them with the Holm-Bonferroni procedure [8].

2.4 Results of the JUnit Testing Competition

Table 2 presents for each tool and for each time budget theminimum,

mean, median and maximum number of the generated test cases.

As expected, the increase in the time budget for the generation

process leads to the increase in the number of generated test cases.

However, BBC and EvoSuite show a different trend. Specifically, as

shown in Table 2, for BBC only the maximum number of generated

tests is higher with a budget of 120 seconds, while for EvoSuite

all descriptive statistics show a decreasing trend. Furthermore, for

2 CUTs in our benchmark, both Kex and Kex-Reflection were not

able to generate any test case, with Kex showing this behaviour

also for additional 3 CUTs.

To provide a deeper insight on the obtained results for each

competing tool, Figures 1, 2, and 3 report the percentage of lines,

branches and mutants being covered by the seven competing tools,

for each specific time budget. Note that, the mutation coverage is

the ratio between the number of mutants that were killed by at

least one test and the total number of mutants being generated.

Table 2: Statistics on number of test cases generation for

each tool and each time budget.

Tool Time Min Mean Median Max

budget

BBC
30 0 29 20 160

120 0 23 14 192

EvoSuite
30 0 42 27 250

120 0 29 18 211

Kex
30 0 17 7 159

120 0 28 13 300

Kex-Reflection
30 0 50 28 312

120 0 65 38 369

Randoop
30 1 3,705 892 106,143

120 0 10,654 2,244 303,878

UTBot
30 0 42 31 194

120 0 58 39 350

UTBot-Mocks
30 2 44 34 170

120 2 56 35 263

Figure 1: Lines Coverage Ratio for the 7 competing tools for

30 and 120 seconds.

Unsurprisingly, when increasing the time budget for generation

purposes, the median line and branch coverage also (slightly) in-

crease. Specifically, as shown in Figure 1, the line coverage ratio for

EvoSuite moves from 46.7% (30 seconds) up to 71.7% (120 seconds),

while for BBC the increase is from 46.7% up to 65.6%.

When it comes to branch coverage, as shown in Figure 2, only

BBC and EvoSuite are able to reach a median branch coverage

greater than 40% for each of the two time budgets. EvoSuite per-

forms the best, with its median branch coverage ratio being equal

to 60% for the time budget of 120 seconds. UTBot shows a median

branch coverage increasing from 22.9% (30 seconds) up to 33.3%

with a time budget of 120 seconds. Furthermore, even though for

some classes UTBot-Mocks achieves a maximum branch coverage

of 100%, its median value is equal to 0. A similar behavior is shown

by Kex when using a time budget of 30 seconds. In contrast, Kex-

Reflection has a median branch coverage of 5.0% and 9.4% for each

time budget respectively.

In terms of mutation coverage ratio (see Figure 3), quite sur-

prisingly, for five out of seven tools, i.e., BBC, EvoSuite, Randoop,

UTBot, and Kex there is a decreasing trend when increasing the

27

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 28,2022 at 08:01:28 UTC from IEEE Xplore. Restrictions apply.

SBST’22 , May 9, 2022, Pittsburgh, PA, USA Alessio Gambi, Gunel Jahangirova, Vincenzo Riccio, and Fiorella Zampetti

Figure 2: Branches Coverage Ratio for the 7 competing tools

for 30 and 120 seconds.

Figure 3: Mutants Coverage Ratio for the 7 competing tools

for 30 and 120 seconds.

time budget up to 120 seconds. Furthermore, for a time budget of

30 seconds, BBC and EvoSuite are able to reach a median mutants

coverage ratio of � 20%, while, for a time budget of 120 seconds,

Kex-Reflection is the only one showing a mutant coverage greater

than 10% among the remaining 6 tools.

Moreover, we have looked at the percentage of mutants being

killed among the ones being generated. Only for Kex and Kex-

Reflection these percentages never reach 100% while stopping at

a maximum of 91.7% and 94.4%, respectively. Furthermore, while

considering only the classes for which all the competing tools are

able to kill at least one mutant, we found that BBC is the one

showing the highest median percentage, 72.6% and 96.7% for 30 and

120 seconds, respectively, followed by EvoSuite (i.e., with 67.4% and

94.4%). It is important to remark that BBC and EvoSuite might be

showing similar results since BBC is built on top of EvoSuite.

Last but not least, we report the scores and ranking achieved

by the tools considering the two different time budgets being used.

The final score formula [15] has been created and improved during

the previous editions of the tool competition and takes into account

the line and branch coverage, the mutation score, and the time

budget used by the generator. Moreover, it applies a penalty for

flaky and non-compiling tests. We observed a final score of 380.57

for EvoSuite, 371.06 for BBC, 263.43 for UTBot, 246.3 for Randoop,

133.18 for Kex-Reflection, 133.03 for UTBot-Mocks and 80.94 for Kex.

In terms of ranking, instead, we have EvoSuite (2.4), followed by

BBC (2.55), UTBot (3.58), Randoop (3.65), Kex (5.21), UtBot-Mocks

(5.30), and Kex-Reflection (5.31).

2.5 Conclusions and Final Remarks of the
JUnit Testing Tool Competition

This year marks the tenth edition of the Java Unit Testing Competi-

tion. In comparison to the previous editions, this year we have the

highest number of competitors, namely UTBot, UTBot-Mocks, Kex,

Kex-Reflection, EvoSuite, BBC, and Randoop as a baseline. As per

results of this year, the best performing tool is EvoSuite followed by

BBC, while Kex seems to perform the worst on the selected CUTs.

The analysis of collected results by the organisers of the competi-

tion and by the participants revealed that for some of the generated

test suites it was not possible to perform mutation analysis. The

most likely cause of this is that PIT requires some special treatment

when it comes to setting up its classpath, as we did not experience

this problem when using JaCoCo for both line and branch coverage.

We plan to investigate this issue further, to identify the definite root

cause of the problem and to perform a fix for the next editions of

the competition. In addition, we envision several other possibilities

for improvement such as: (i) extending the list of criteria used for

the evaluation purposes by adding new ones such as performance-

awareness [21] and readability [33]); (ii) widening the scope of the

competition to the tools supporting the testing of more complex

applications (e.g., cloud-based systems [27]); and (iii) considering to

extend the infrastructure to support other programming languages

(e.g., Python [26]).

3 THE CYBER-PHYSICAL SYSTEMS TESTING
TOOL COMPETITION

Self-driving cars are safety-critical CPSs which are growing in rele-

vance within the SBST research community [36] and industry [12].

Therefore, we organized the CPS Testing Tool Competition to en-

courage researchers to investigate the problem of testing such CPSs

and provide a shared framework for benchmarking test generators.

This second edition received six submissions, namely AdaFre-

netic, AmbienGen, FreneticV, GenRL, EvoMBT and WOGAN. Com-

pared to the previous edition, the number of participating teams

increased by 50% (from 4 to 6); 2 out of 4 teams from the previous

edition joined also this year’s competition. The number of submit-

ted tools increased by ×1.2 (from 5 to 6).

To ease the test generators’ development, we provided the partic-

ipants with an open-source, extensible test infrastructure [20]. Our

infrastructure allows test generators to work on abstract, hence sim-

pler, test case representations and hides the details of implementing

and executing the generated test cases as physically accurate simula-

tions using BeamNG.tech [10]. Since the past edition, we integrated

in the test infrastructure an additional Deep Learning (DL)-based

driving agent and a test feature extraction component [41] which

characterizes the generated tests.

28

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 28,2022 at 08:01:28 UTC from IEEE Xplore. Restrictions apply.

SBST Tool Competition 2022 SBST’22 , May 9, 2022, Pittsburgh, PA, USA

As test subjects, we selected BeamNG.AI, the driving agent

shipped with the driving simulator, and Dave-2, a DL-based driving

agent based on the architecture proposed by Bojarski et al. [11].

Both test subjects have been extensively studied in previous re-

search [18, 25, 37, 41]. In particular, BeamNG.AI is the same test

subject used in the first edition of this competition [32].

3.1 Simulation-based Testing of Self-Driving
Car Software

For this competition, we considered self-driving cars as represen-

tative instance of CPS and tested them in computer simulations,

which constitute a viable alternative to expensive, ineffective and

dangerous field operational tests. Therefore, we challenged the

participants to implement generators of virtual tests. To reduce on-

boarding efforts, we kept the same setup of last year’s competition

and considered driving scenarios taking place on flat roads sur-

rounded by green grass. For simplicity, we used fixed environmen-

tal conditions (i.e., weather and lighting set to sunny day without

fog) and road layout (i.e., single roads with two fixed-width lanes).

We focused on testing lane-keeping assist systems (LKAS) by

defining the following driving task: driving without going off the

lane from a given starting position, i.e., the beginning of a road, to

a target position, i.e., the end of that road. Given this driving task,

the goal of the test generators was to create challenging, yet valid,

virtual roads that cause the test subjects to drive off the right lane.

Our framework represents virtual roads as sequences of road

points defined on a two-dimensional map. It interpolates the road

points using cubic splines and considers the first and last road points

as the starting and target position of the driving tasks. Despite the

number of possible road point sequences is extremely large, not all

of them result in valid roads [19, 32, 37]. In particular, valid roads

(i) do not self-intersect; (ii) do not contain overly-sharp turns; and

(iii) are fully contained in the map. Our framework ensures that

only valid tests are executed as driving simulations. Consequently,

invalid tests do not count as failed tests; instead, they are taken

into account for assessing the tools’ generation effectiveness.

3.2 The Tools of the CPS Testing Competition

Six tools competed in this edition of the CPS Testing Tool Competi-

tion: AdaFrenetic [40], AmbieGen [23], FreneticV [14], GenRL [39],

EvoMBT [16], and WOGAN [34]. All the six submissions are novel

but three of them (i.e., 50%) extend tools submitted in the previous

competition, suggesting that our initiative already had an impact

on the community. Specifically, AdaFrenetic and FreneticV extend

Frenetic [13], whereas AmbieGen is an evolution of SWAT [22].

Noticeably, in this competition, tools implemented a wider range of

approaches than last year. These approaches range from the stan-

dard feedback-driven search to model-based testing, Reinforcement

Learning and Deep Generative Models.

3.3 Methodology of the CPS Testing
Competition

3.3.1 Subject Systems of the CPS Testing Competition. We evalu-

ated the competing tools using the BeamNG.tech driving simula-

tor [10]. We chose two test subjects widely used in SBST literature:

BeamNG.AI, BeamNG.tech simulator’s built-in driving agent, and

Dave-2, a DL-based driving agent. We made the driving simula-

tor and the test subjects available to the competitors before the

submission but did not disclose the experimental setup.

BeamNG.AI knows the geometry of the whole road and utilizes

a complex optimization process to plan trajectories that drive the

ego-car as close as possible to the speed limit, while keeping the

vehicle as much as possible inside the lane. Dave-2, instead, is an

end-to-end approach that uses a DL architecture consisting of three

convolutional layers, followed by five fully-connected layers [11] to

predict steering angles from images taken by the ego-car’s onboard

camera.We trained Dave-2 with images captured by BeamNG.tech’s

camera sensors paired with steering angles of the ego-car collected

while BeamNG.AI was driving at the center of the lane. Since the

Dave-2 implements imitation learning, we trained it only with

positive examples, i.e., we discarded training data in which the

ego-car drove out of the lane.

3.3.2 Goal and Metrics. The goal of the competition is to generate

the highest number of diverse failure-inducing inputs, i.e., valid

virtual roads that cause the ego-car to drive out of the lane. Our

infrastructure detects a failure each time the ego-car (partially)

drives outside the lane, i.e., if the area of the ego-car outside the

lane is above a configurable threshold. For instance, a 0.5 threshold
triggers a failure when more than half of the ego-car lies outside

the lane. We label those failures as Out of Bound (OOB) episodes

and refer to the threshold value controlling them as OOB tolerance

(OOB Tol. in Table 3).

We limit the execution of the test generation to be within a given

time budget. To provide more flexibility during test generation,

we provide the competitors with two time budgets: generation and

execution. The former accounts for the time allotted to the tools for

generating test cases, whereas the latter corresponds to the time

available for executing simulations. Notably, we improved results

reproducibility by measuring the execution budget in simulated

seconds, i.e., logical time.

Deciding which test generator is objectively the best is difficult

and, currently, remains an open challenge. As done in the previous

edition, we ranked tools by considering various aspects of test

generation, including their ability to generate valid test cases and

trigger OOBs. In this edition, we also introduced a new metric to

measure the diversity of the failure-inducing tests. In the following,

we describe the metrics used for ranking the test generators.

Test Generation Effectiveness. Effective test generators wisely use

their generation budget and should mostly produce valid tests, i.e.,

they do not waste the generation budget in generating invalid tests.

Therefore, we compute the test generation effectiveness as the ratio

of valid tests over all the generated tests.

Test Generation Efficiency. Efficient test generators generatemany

tests within the test budget. We measure test generation efficiency

as the inverse of the average test generation time, i.e., the ratio of

the number of generated tests to the used generation budget, and

normalized the efficiency by empirically computing the minimum

and maximum efficiency values over all the runs of all the tools.

Failure-inducing Test Diversity. Tests are useful when they trigger

failures and when those failures are diverse because they give devel-

opers information about the (mis-)behavior of the ego-car in various

29

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 28,2022 at 08:01:28 UTC from IEEE Xplore. Restrictions apply.

SBST’22 , May 9, 2022, Pittsburgh, PA, USA Alessio Gambi, Gunel Jahangirova, Vincenzo Riccio, and Fiorella Zampetti

0.0
4

0.0
9

0.1
4

0.1
9

0.2
4

0.2
9

0.3
5

0.4
0

0.4
5

0.5
0

DirCov

0.64

51.44

102.24

153.03

203.83

254.63

305.43

356.22

407.02

457.82
St
dS

A

Figure 4: Feature Map showing the OOB coverage achieved

by the tools in the BeamNG.AI configuration.

execution conditions. Characterizing failure-inducing inputs is far

from trivial, and basic methods to establish input similarity using

distance metrics are inadequate to capture driving agents’ behav-

ior. Therefore, we consider high-level features that meaningfully

characterize the tests. Specifically, we selected two features that

have been empirically assessed by Zohdinasab et al. [41] and Ja-

hangirova et al. [24]: Direction Coverage (DirCov) and Standard

deviation of the Steering Angle (StdSA).

DirCov is a structural feature that indicates how many directions

(e.g., N, S, E, W) the virtual road covers. We measure DirCov as

the number of different angular sectors covered by the directions

of the road segments. In particular, we consider 36 sectors, each

spanning 10 degrees. StdSA, instead, is a behavioral feature that

measures the standard deviation of the sequence of the ego-car’s

steering angles collected during test execution. StdSA characterizes

the agent’s driving style.

We use these features to define bi-dimensional feature maps

where the failure-inducing inputs are positioned based on their

feature values, so that similar failure-inducing tests occupy neigh-

boring (or the same) map’s cells (see Figure 4). Such a feature map

filled with a tool’s failure-inducing inputs enables us to measure

the OOB coverage achieved by that tool, hence quantifying how

many diverse failure-inducing tests it generated. This approach is

inspired by recent work on Illumination search [41] and has been

already used for test selection [28].

Given a failure-inducing input, we argue that not all of its content

determines the OOB. Therefore, before computing DirCov and

StdSA, we extract the portion of the road relevant to the failure

and compute the features only for that road segment. We define

the road segment relevant to a failure as the segment of the road

around the OOB location, to account for the most recent activity

of the ego-car (before OOB location) and the trajectory it might

have planned (after OOB location). In this competition, we consider

60m-long relevant segments (30m before and 30m after the OOB).

To compute the coverage of the feature space achieved by a tool,

we build a 10 × 10 feature map and detect the cells covered by

all the tools (e.g., see Figure 4), then we measure how many of

those cells were covered by the considered tool. Given the values

of Effectiveness (Effect), Efficiency (Effic) and Diversity (Div), we

Table 3: Experimental Setups

Name Map Speed Gen. Exec. OOB

Size Limit Budget Budget Tol.

BeamNG.AI 200m × 200m 70 Km/h 1 h 2 h 0.85

Dave-2 200m × 200m 35 Km/h 1 h 2 h 0.1

compute the Score to rank the test generators as follows:

Score = 𝛼 ∗ Div + 𝛽 ∗ Effic + 𝛾 ∗ Effect (1)

where 𝛼 , 𝛽 and 𝛾 define the relative contribution of each metric

towards the final value. For ranking the test generators, we gave

more importance to failure-inducing test diversity (𝛼 = 0.6) than
generation efficiency (𝛽 = 0.2) and effectiveness (𝛾 = 0.2) because
triggering failures is the main goal of testing.

3.4 Experimental Procedure

We ran each tool 10 times in the two experimental setups reported

in Table 3: BeamNG.AI and Dave-2.

BeamNG.AI features the BeamNG.AI agent driving up to 70Km/h,

an OOB tolerance value of 0.85, a generation budget of 1h and

execution budget of 2h. This setup is similar to the one adopted

in the previous edition of this competition. Dave-2 features the

Dave-2 agent driving up to 35Km/h, an OOB tolerance of 0.1, and
the same time budgets as BeamNG.AI. In this setup, Dave-2 drives

more slowly, which makes it harder to cause OOBs, but we use a

more sensible oracle to compensate for the additional difficulty.

To ensure a fair comparison, we ran each tool the same number

of times and on dedicated machines. Specifically, we ran the exper-

iments in the BeamNG.AI configuration on a desktop PC running

Microsoft Windows 10 Enterprise and featuring a quad-core Intel

i7-7700K CPU@ 4.20 GHz, 16 GB of Memory @ 2400Z Mhz, and an

NVidia GeForce GTX 1080 GPU. Instead, we ran the experiments in

the Dave-2 configuration on Google Cloud n1-standard-8 virtual
machines running Microsoft Windows Server 2016 Datacenter and

featuring 8 vCPUs, 30 GB ofMemory and anNVIDIA Tesla P100. For

all the experiments, we used the version 0.24.0.2 of BeamNG.tech.

3.5 Results of the CPS Testing Competition

Test Generation Effectiveness and Efficiency. Table 4 reports the

average count of valid (col. Val.) and invalid (col. Inval.) test cases

produced by each tool (col. Tool) in each configuration (col. Config).

Since the tools adopt different approaches to test generation, we

report in the table also the percentage of the generation budget

actually used by each tool (col. Time), to further characterize their

efficiency. From these results, we can observe that all the tools

followed similar trends across the two configurations.

WOGAN generated the highest number of test cases using the

smallest portion of generation time, thus resulting the most effi-

cient test generator in this competition. However, WOGAN also

produced the highest number of invalid roads (more than 50%).

Those invalid tests, mostly caused by overly sharp turns, drastically

reduce this tool effectiveness. On the contrary, GenRL and EvoMBT

never produced invalid test cases, thus resulting the most effective

test generators in this competition. However, EvoMBT produced

30

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 28,2022 at 08:01:28 UTC from IEEE Xplore. Restrictions apply.

SBST Tool Competition 2022 SBST’22 , May 9, 2022, Pittsburgh, PA, USA

Table 4: Test Generation Efficiency and Effectiveness. Valid

and invalid tests and used generation time.

Config. Tool Val. Inval. Time (%)

BeamNG.AI AdaFrenetic 125.6 583.7 100

AmbieGen 494.8 17.2 95.3

FreneticV 483.6 0.9 71.9

GenRL 350 0 81.3

EvoMBT 27 0 87.5

WOGAN 1146.1 1453.5 3.2

Dave-2 AdaFrenetic 123.2 585.8 100

AmbieGen 386.2 13.5 51.1

FreneticV 339.4 0.4 51

GenRL 206.7 0 33.8

EvoMBT 22.1 0 85.1

WOGAN 839.8 1182.3 2.2

Tool

0

100

200

300

400

O
O

B
Co

un
t

BeamNG.AI

Tool

0

5

10

15

20

25

Dave 2

AD
AF

RE
N

ET
IC

AM
BI

EG
EN

FR
EN

ET
IC

V

G
EN

RL

M
BT

W
O

G
AN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
l.

Co
ve

ra
ge

AD
AF

RE
N

ET
IC

AM
BI

EG
EN

FR
EN

ET
IC

V

G
EN

RL

M
BT

W
O

G
AN

0.0

0.1

0.2

0.3

0.4

Figure 5: Benchmark Results. The plots report the number

of detected failures (top) and the achieved OOB coverage

(bottom) in each configuration.

the lowest number of test cases despite using almost the whole

generation budget. AmbieGen and Frenetic produced many valid

test cases and relatively few invalid ones, whereas AdaFrenetic used

the whole generation budget and generated more invalid tests than

valid ones.

Failure-inducing Test Diversity. Figure 5 shows the distribution

of triggered OOBs (top) and the relative feature maps’ coverage

achieved by each tool (bottom) in both configurations.

Table 5: Final scores. The results are averaged across 10 rep-

etitions. Bold text indicates the best values.

Config. Tool Effic. Effect. . Div. Score

BeamNG.AI AdaFrenetic .001 .035 .146 .183

AmbieGen .001 .193 .350 .544

FreneticV .001 .200 .246 .447

GenRL .001 .200 .036 .237

EvoMBT .000 .200 .016 .216

WOGAN .148 .090 .276 .514

Dave-2 AdaFrenetic .001 .035 .008 .044

AmbieGen .001 .193 .138 .333

FreneticV .001 .200 .101 .302

GenRL .001 .200 .010 .211

EvoMBT .000 .200 .000 .200

WOGAN .148 .086 .028 .262

In the BeamNG.AI configuration, WOGAN triggered the largest

number of OOBs but did not achieve the highest coverage, which

indicates that many of the triggered OOBs had similar features.

Instead, AmbieGen obtained the highest coverage by triggering a

remarkable number of OOBs in this configuration.

In the Dave-2 configuration, AmbieGen found the highest num-

ber of OOBs and achieved the highest coverage. FreneticV exposed

many OOBs and achieved remarkable coverage, whereas the other

tools found only a few OOBs and achieved low coverage.

Final Score. AmbieGen won this competition since it is the tool

that reached the highest score in both configurations (i.e, 0.544 in
BeamNG.AI and 0.333 in Dave-2). WOGAN ranked in second place,

by achieving the second best score for BeamNG.AI (0.514) and the
third best score forDave-2 (0.262), while FreneticV achieved the

second best for Dave-2 (0.302) and the third best for BeamNG.AI
(0.447), reaching the third place.

3.6 Conclusions and Final Remarks of the CPS
Testing Competition

The SBST CPS testing tool competition aims to tackle the chal-

lenge of evaluating and comparing test CPSs generators. In this

second edition, six tools competed by testing two test subjects

(i.e., BeamNG.AI and Dave-2) and generated inputs that triggered

failures of both systems. FreneticV, GenRL and EvoMBT always

generated valid tests; WOGAN generated the highest number of

tests in the shortest time, and Ambiegen triggered the highest num-

ber of diverse failures, hence it won the competition. Compared

to the previous edition, we improved our testing infrastructure

and methodology in various aspects, including integrating a new

DL-based driving agent and introducing a novel metric to assess

failure diversity in terms of feature space coverage. Nevertheless,

we believe that the crucial problems of testing CPS systems and ob-

jectively evaluating CPS testing tools are not yet solved and further

editions of this competition should investigate them.

31

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 28,2022 at 08:01:28 UTC from IEEE Xplore. Restrictions apply.

SBST’22 , May 9, 2022, Pittsburgh, PA, USA Alessio Gambi, Gunel Jahangirova, Vincenzo Riccio, and Fiorella Zampetti

ACKNOWLEDGMENTS

We thank the participants in both competitions for their invaluable

contribution, BeamNG.GmbH for providing their driving simulator,

and the Google Open Source Security Team for providing access

to Google Cloud. This work was partially supported by the H2020

project PRECRIME (ERC Grant Agreement n. 787703), the H2020

project COSMOS (Project n. 957254-COSMOS), and the DFG project

STUNT (DFG Grant Agreement n. FR 2955/4-1).

REFERENCES
[1] 2021. Contest Infrastructure. https://github.com/JUnitContest/junitcontest. [On-

line; accessed 23-02-2021].
[2] 2021. JaCoCo. https://www.jacoco.org/jacoco/trunk/doc/. [Online; accessed

23-02-2021].
[3] 2021. Kex. https://github.com/vorpal-research/kex/tree/sbst-21. [Online; ac-

cessed 23-02-2021].
[4] 2021. PiTest. http://pitest.org/. [Online; accessed 23-02-2021].
[5] 2022. BBC. https://github.com/pderakhshanfar/evosuite/tree/BBC. [Online;

accessed 13-03-2022].
[6] 2022. Kex-Reflection. https://github.com/vorpal-research/kex/tree/sbst2022-

reflection. [Online; accessed 28-02-2022].
[7] 2022. UTBot. https://github.com/UnitTestBot.
[8] Hervé Abdi. 2010. Holm’s sequential Bonferroni procedure. Encyclopedia of

research design 1, 8 (2010), 1–8.
[9] Andrea Arcuri and Lionel Briand. 2014. A Hitchhiker’s Guide to Statistical Tests

for Assessing Randomized Algorithms in Software Engineering. Softw. Test. Verif.
Reliab. 24, 3 (May 2014), 219–250. https://doi.org/10.1002/stvr.1486

[10] BeamNG GmbH. 2021. BeamNG.tech. https://www.beamng.gmbh/research
[11] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning
for Self-Driving Cars. CoRR abs/1604.07316 (2016). arXiv:1604.07316 http:
//arxiv.org/abs/1604.07316

[12] Markus Borg. 2021. The AIQ Meta-Testbed: Pragmatically Bridging Academic AI
Testing and Industrial Q Needs. In Software Quality: Future Perspectives on Soft-
ware Engineering Quality, Dietmar Winkler, Stefan Biffl, Daniel Mendez, Manuel
Wimmer, and Johannes Bergsmann (Eds.). Springer International Publishing,
Cham, 66–77.

[13] Ezequiel Castellano, Ahmet Cetinkaya, Cédric Ho Thanh, Stefan Klikovits, Xiaoyi
Zhang, and Paolo Arcaini. 2021. Frenetic at the SBST 2021 Tool Competition. In
14th IEEE/ACM International Workshop on Search-Based Software Testing, SBST
2021, Madrid, Spain, May 31, 2021. IEEE, 36–37. https://doi.org/10.1109/SBST52555.
2021.00016

[14] Ezequiel Castellano, Stefan Klikovits, Ahmet Cetinkaya, and Paolo Arcaini. 2022.
FreneticV tool. https://github.com/ERATOMMSD/freneticV-sbst22.

[15] Xavier Devroey, Alessio Gambi, Juan Pablo Galeotti, René Just, Fitsum Kifetew,
Annibale Panichella, and Sebastiano Panichella. 2021. JUGE: An Infrastructure
for Benchmarking Java Unit Test Generators. https://doi.org/10.48550/arXiv.
2106.07520

[16] Raihana Ferdous, Chia kang Hung, Fitsum Kifetew, Davide Prandi, and Angelo
Susi. 2022. EvoMBT tool. https://github.com/iv4xr-project/iv4xr-mbt.

[17] Gordon Fraser and Andrea Arcuri. 2014. A Large-Scale Evaluation of Automated
Unit Test Generation Using EvoSuite. ACM Transactions on Software Engineering
and Methodology 24, 2 (dec 2014), 1–42. https://doi.org/10.1145/2685612

[18] Alessio Gambi, Tri Huynh, and Gordon Fraser. 2019. Generating effective test
cases for self-driving cars from police reports. In Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra
Russo (Eds.). ACM, 257–267. https://doi.org/10.1145/3338906.3338942

[19] Alessio Gambi, MarcMüller, and Gordon Fraser. 2019. AsFault: testing self-driving
car software using search-based procedural content generation. In Proceedings of
the 41st International Conference on Software Engineering: Companion Proceed-
ings, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik
Bultan, and Jon Whittle (Eds.). IEEE / ACM, 27–30. https://doi.org/10.1109/ICSE-
Companion.2019.00030

[20] Alessio Gambi and Vincenzo Riccio. 2021. SBST CPS Tool Competition Infras-
tructure. https://github.com/se2p/tool-competition-av.

[21] G. Grano, C. Laaber, A. Panichella, and S. Panichella. 2019. Testing with Fewer
Resources: An Adaptive Approach to Performance-Aware Test Case Generation.
IEEE Transactions on Software Engineering (2019), 1–1.

[22] Dmytro Humeniuk, Giuliano Antoniol, and Foutse Khomh. 2021. SWAT tool
at the SBST 2021 Tool Competition. In 14th IEEE/ACM International Workshop

on Search-Based Software Testing, SBST 2021, Madrid, Spain, May 31, 2021. IEEE,
42–43. https://doi.org/10.1109/SBST52555.2021.00019

[23] Dmytro Humeniuk, Foutse Khomh, and Giuliano Antoniol. 2022. AmbieGen tool.
https://github.com/dgumenyuk/tool-competition-av.

[24] Gunel Jahangirova, Andrea Stocco, and Paolo Tonella. 2021. Quality Metrics and
Oracles for Autonomous Vehicles Testing. In Proceedings of 14th IEEE International
Conference on Software Testing, Verification and Validation (ICST ’21). IEEE, 194–
204.

[25] Sajad Khatiri, Christian Birchler, Bill Bosshard, Alessio Gambi, and Sebas-
tiano Panichella. 2021. Machine Learning-based Test Selection for Simulation-
based Testing of Self-driving Cars Software. CoRR abs/2111.04666 (2021).
arXiv:2111.04666 https://arxiv.org/abs/2111.04666

[26] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2020. Automated Unit Test
Generation for Python. In Search-Based Software Engineering - 12th International
Symposium, SSBSE 2020 (Lecture Notes in Computer Science), Aldeida Aleti and
Annibale Panichella (Eds.), Vol. 12420. Springer, 9–24. https://doi.org/10.1007/978-
3-030-59762-7_2

[27] Diego Martin and Sebastiano Panichella. 2019. The cloudification perspectives of
search-based software testing. In InternationalWorkshop on Search-Based Software
Testing, SBST@ICSE 2019, Alessandra Gorla and José Miguel Rojas (Eds.). IEEE /
ACM, 5–6. https://doi.org/10.1109/SBST.2019.00009

[28] Vuong Nguyen, Stefan Huber, and Alessio Gambi. 2021. SALVO: Automated
Generation of Diversified Tests for Self-driving Cars from Existing Maps. In 2021
IEEE International Conference on Artificial Intelligence Testing, AITest 2021, Oxford,
United Kingdom, August 23-26, 2021. IEEE, 128–135. https://doi.org/10.1109/
AITEST52744.2021.00033

[29] Carlos Pacheco and Michael D Ernst. 2007. Randoop: Feedback-Directed Random
Testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object
oriented programming systems and applications companion - OOPSLA ’07, Vol. 2.
ACM Press, 815. https://doi.org/10.1145/1297846.1297902

[30] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Auto-
mated Test Case Generation as a Many-Objective Optimisation Problem with
Dynamic Selection of the Targets. IEEE Transactions on Software Engineering 44,
2 (2018), 122–158. https://doi.org/10.1109/TSE.2017.2663435

[31] Sebastiano Panichella, Alessio Gambi, Fiorella Zampetti, and Vincenzo Riccio.
2021. SBST Tool Competition 2021. In 14th IEEE/ACM International Workshop
on Search-Based Software Testing, SBST 2021, Madrid, Spain, May 31, 2021. IEEE,
20–27. https://doi.org/10.1109/SBST52555.2021.00011

[32] Sebastiano Panichella, Alessio Gambi, Fiorella Zampetti, and Vincenzo Riccio.
2021. SBST Tool Competition 2021. In 14th IEEE/ACM International Workshop
on Search-Based Software Testing, SBST 2021, Madrid, Spain, May 31, 2021. IEEE,
20–27. https://doi.org/10.1109/SBST52555.2021.00011

[33] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and
Harald C. Gall. 2016. The impact of test case summaries on bug fixing per-
formance: an empirical investigation. In International Conference on Software
Engineering, ICSE 2016, Laura K. Dillon, Willem Visser, and Laurie A. Williams
(Eds.). ACM, 547–558. https://doi.org/10.1145/2884781.2884847

[34] Jarkko Peltomaki, Frankie Spencer, and Ivan Porres. [n.d.]. Wasserstein generative
adversarial networks for online test generation for cyber physical systems. In
15th IEEE/ACM International Workshop on Search-Based Software Testing, SBST
2022, Pittsburgh, PA, USA, May 9, 2022.

[35] Dulce G Pereira, Anabela Afonso, and Fátima Melo Medeiros. 2015. Overview of
Friedman’s test and post-hoc analysis. Communications in Statistics-Simulation
and Computation 44, 10 (2015), 2636–2653.

[36] Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova, Michael
Weiss, and Paolo Tonella. 2020. Testing machine learning based systems: a
systematic mapping. Empir. Softw. Eng. 25, 6 (2020), 5193–5254. https://doi.org/
10.1007/s10664-020-09881-0

[37] Vincenzo Riccio and Paolo Tonella. 2020. Model-based Exploration of the Frontier
of Behaviours for Deep Learning System Testing. In Proceedings of the ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE ’20). Association for Computing Machinery, 13
pages. https://doi.org/10.1145/3368089.3409730

[38] Michael R Sheldon, Michael J Fillyaw, and W Douglas Thompson. 1996. The
use and interpretation of the Friedman test in the analysis of ordinal-scale data
in repeated measures designs. Physiotherapy Research International 1, 4 (1996),
221–228.

[39] Luigi Libero Lucio Starace, Andrea Romdhana, and Sergio Di Martino. 2022.
GenRL tool. https://github.com/luistar/GenRL-testing-tool.

[40] SongYang Tan and Ming Fan. 2022. AdaFrenetic tool. https://github.com/TayYim/
adafrenetic-sbst22.

[41] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2021.
DeepHyperion: exploring the feature space of deep learning-based systems
through illumination search. In Proceedings of the 30th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis. 79–90. https://doi.org/10.
1145/3460319.3464811

32

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 28,2022 at 08:01:28 UTC from IEEE Xplore. Restrictions apply.

