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Polynomial formulations as a barrier for reduction-based

hardness proofs
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Abstract

The Strong Exponential Time Hypothesis (SETH) asserts that for every ε > 0 there exists k
such that k-SAT requires time (2−ε)n. The field of fine-grained complexity has leveraged SETH
to prove quite tight conditional lower bounds for dozens of problems in various domains and
complexity classes, including Edit Distance, Graph Diameter, Hitting Set, Independent Set, and
Orthogonal Vectors. Yet, it has been repeatedly asked in the literature whether SETH-hardness
results can be proven for other fundamental problems such as Hamiltonian Path, Independent
Set, Chromatic Number, MAX-k-SAT, and Set Cover.

In this paper, we show that fine-grained reductions implying even λn-hardness of these
problems from SETH for any λ > 1, would imply new circuit lower bounds: super-linear lower
bounds for Boolean series-parallel circuits or polynomial lower bounds for arithmetic circuits
(each of which is a four-decade open question).

We also extend this barrier result to the class of parameterized problems. Namely, for
every λ > 1 we conditionally rule out fine-grained reductions implying SETH-based lower bounds
of λk for a number of problems parameterized by the solution size k.

Our main technical tool is a new concept called polynomial formulations. In particular, we
show that many problems can be represented by relatively succinct low-degree polynomials, and
that any problem with such a representation cannot be proven SETH-hard (without proving
new circuit lower bounds).
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1 Introduction

In this paper, we explain the lack of hardness results based on the Strong Exponential Time
Hypothesis for a large class of problems by proving that such hardness results would lead to new
strong circuit lower bounds.

1.1 Background

The central question in complexity theory is to find the minimum time required to solve a given
computational problem. Answering such a question involves proving lower bounds on computational
complexity. Unconditional lower bounds remain elusive: for example, we do not know how to solve
CNF-SAT in time (2− ε)n (where n is the number of variables in an input CNF formula and ε > 0
is a constant), and at the same time we have no tools to exclude the possibility of even an O(n)
time algorithm. Super-linear lower bounds are only known for restricted models of computation.

For this reason, all existing lower bounds are conditional. Classical complexity theory, founded
in the 1970’s, considers polynomial-time reductions: we say that P reduces to Q and write P ≤ Q, if
a polynomial-time algorithm for Q can be used to solve P in polynomial time. Such a reduction may
be viewed as a conditional lower bound: if the problem P cannot be solved in polynomial time, then
neither can the problem Q. While polynomial-time reductions (conditionally) rule out polynomial-
time algorithms for many problems, they say little about quantitative hardness of computational
problems.

The recently developed field of fine-grained complexity aims to establish tighter connections be-
tween complexities of computational problems. By using fine-grained reductions, one can leverage
algorithmic hardness assumptions to prove quantitative lower bounds for wide classes of problems.
A fine-grained reduction, denoted (P, p(n)) ≤ (Q, q(n)), implies that a faster than q(n)-time algo-
rithm for Q leads to a faster than p(n)-time algorithm for P . The standard assumptions in this
field (see Vassilevska Williams [Vas15, Vas18] for excellent surveys on this topic) are hardness of
CNF-SAT [IP99, IPZ98], 3-SUM [GO95, Eri99], Orthogonal Vectors [Wil05], All Pairs Shortest

Paths [VW10], Online Matrix-Vector Multiplication [HKNS15], and Set Cover [CDL+16].
One of the most popular fine-grained assumptions, the Strong Exponential Time Hypothesis

(SETH), postulates that for every ε > 0 there exists a k such that k-SAT cannot be solved in
time (2 − ε)n. The Strong explanatory power of SETH is confirmed by many tight lower bounds
for computational problems both in P and NP. We refer the reader to [Vas18, Section 3] for an
extensive list of such results, and we list a few notable representatives below. The following upper
bounds are known to be tight (up to small multiplicative factors) under SETH:

• n2 for Orthogonal Vectors [Wil05] (where n is the number of vectors), 3/2-approximate
Graph Diameter [RV13] (where n is the number of nodes in the input graph), and Edit

Distance [BI15] (where n is the length of the input strings);

• 2n for Hitting Set (where n is the size of the universe); and NAE-SAT (where n is the number
of the variables) [CDL+16];

• nk for k-Dominating Set [PW10] (where n is the number of nodes in the input graph and
k ≥ 7);

• 2tw for Independent Set [LMS18] (where tw is the treewidth of the input graph).

1



Given such an extensive list of tight conditional lower bounds, one may speculate that SETH can
explain many other current algorithmic barriers.

Open Problem 1. Can we prove λn-SETH hardness results for λ > 1 for any of the following
problems: k-SAT (asked in [CDL+16, problem 5]), Hamiltonian Path (asked in [FK10, chapter 12]),
Chromatic Number (asked in [LMS11, problem 5], [Zam21, problem 43], [CDL+16, problem 2]),
Set Cover (asked in [CDL+16, problem 1]), Independent Set (asked in [LMS11, problem 4]), Clique,
Vertex Cover, MAX-k-SAT, 3d-Matching?

Can we prove λk-SETH hardness results Section 2.6 for λ > 1 for any of the following param-
eterized problems (asked in [LMS11, problem 2]): k-Path, k-Vertex Cover, k-Tree, k-Steiner Tree,
k-Internal Spanning Tree, k-Leaf Spanning Tree, k-Nonblocker, k-Path Contractibility, k-Cluster
Editing, k-Set Splitting?

Barriers for hardness proofs. The first (and the only prior to this work) conditional barrier for
proving SETH-hardness results was shown by Carmosino et al. [CGI+16]. For an integer k, k-TAUT
is the language of all k-DNFs that are tautologies (note that a k-DNF formula φ is in k-TAUT
if and only if the k-CNF formula resulting from negating φ is not in k-SAT). [CGI+16] defines a
stronger version of SETH—Non-deterministic Strong Exponential Time Hypothesis (NSETH)—
which postulates that for every ε > 0 there exists k such that even non-deterministic algorithms
cannot solve k-TAUT on n-variate formulas in time 2(1−ε)n. While this conjecture is stronger
than SETH, refuting even NSETH would imply strong lower bounds against Boolean series-parallel
circuits [JMV15]. Carmosino et al. [CGI+16] proved that tight SETH-hardness results for 3-SUM,
APSP, and some other problems would refute NSETH, and, thus, imply new circuit lower bounds
(resolving a four-decade open question).

Circuit lower bounds. The barriers we show for SETH-hardness proofs also lie in the field of
circuit complexity. Below we review two of the main challenges in this field, and we give rigorous
definitions of the circuit models in Sections 2.1 and 2.2. The best known lower bound on the size
of Boolean circuits computing functions in P is 3.1n − o(n) [LY22]. In fact, this bound remains the
best known even for the much larger class of functions from ENP even against the restricted model
of series-parallel circuits. A long-standing open problem in Boolean circuit complexity is to find
an explicit language that cannot be computed by linear-size circuits from various restricted circuit
classes [Val77, AB09, Frontier 3].

Open Problem 2. Prove a lower bound of ω(n) on the size of Boolean series-parallel circuits
computing a language from ENP.

In contrast to the case of Boolean circuits, in the model of arithmetic circuits we have a super-
linear lower bound of Ω(n log n) [Str73a, BS83]. One of the biggest challenges in this area is to
prove a stronger lower bound, for example, a lower bound of nγ for a constant γ > 1.

Open Problem 3. For a constant γ > 1, prove a lower bound of nγ on the arithmetic circuit
complexity of a constant-degree polynomial that can be constructed in polynomial time nO(1).

1.2 Our Contribution

Despite much effort, we still do not have any SETH-hardness results for the problems listed in
Open Problem 1. For example, an algorithm solving the Hamiltonian Path problem in time 2nnO(1)

2



has been known for 60 years [Bel62, HK62], yet we don’t have any improvements on the algorithm
nor conditional lower bounds λn on the complexity of this problem.1 In this paper, we show that
this barrier is no coincidence. Namely, we show that a resolution of Open Problem 1 would resolve
Open Problem 2 or Open Problem 3. More specifically, any SETH-based exponential lower bound
for Hamiltonian Path or any other problem from Open Problem 1 would imply a super-linear lower
bound for series-parallel circuits or an arbitrarily large polynomial lower bound for arithmetic
circuits.

Our first main result says that for a number of well-studied problems, any SETH lower bound
of the form λn for a constant λ > 1 would imply new circuit lower bounds. (In the end of this
section we clarify what we mean by SETH lower bounds, and our definition is quite general.)

Theorem 1.1. If at least one of the following problems

k-SAT, MAX-k-SAT, Hamiltonian Path, Graph Coloring, Set Cover, Independent Set,
Clique, Vertex Cover, 3d-Matching

is λn-SETH-hard for a constant λ > 1, then at least one of the following circuit lower bounds holds:

• ENP requires series-parallel Boolean circuits of size ω(n);

• for every constant γ > 1, there exists an explicit family of constant-degree polynomials over Z
that requires arithmetic circuits of size Ω(nγ).

While this result conditionally rules out, say, 1.1n-hardness of Hamiltonian Path, it is still
possible that the parameterized version of Hamiltonian Path, k-Path, is 1.1k-hard for some function
k := k(n). In our second result, we conditionally rule out even such hardness results (which might
have seemed easier to obtain).

Theorem 1.2. If at least one of the following parameterized problems

k-Path, k-Vertex Cover, k-Tree, k-Steiner Tree, k-Internal Spanning Tree, k-Leaf Span-
ning Tree, k-Nonblocker, k-Path Contractibility, k-Cluster Editing, k-Set Splitting

is λk-SETH-hard for a constant λ > 1, then at least one of the following circuit lower bounds holds:

• ENP requires series-parallel Boolean circuits of size ω(n);

• for every constant γ > 1, there exists an explicit family of constant-degree polynomials over Z
that requires arithmetic circuits of size Ω(nγ).

A couple of remarks about the main results of this work are in order. While an SETH-lower
bound for any problem in the premise of Theorems 1.1 and 1.2 would imply that at least one of
Open Problem 2 or Open Problem 3 must have an affirmative answer, it would not say which one!

The first part of the conclusion of Theorems 1.1 and 1.2 is really that “NSETH fails”, and the
series-parallel circuit lower bound comes as an already known consequence of that [JMV15].

1The undirected version of Hamiltonian Path can be solved in time 1.66n by Björklund’s algorithm [Bjö10]. In
this paper, we only consider the directed version of the Hamiltonian Path and k-Path problems. Since we’re proving
barriers for lower bounds, considering the harder directed version of a problem only makes our barrier results stronger.
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On the definition of SETH-hardness. The Exponential Time Hypothesis (ETH), which fol-
lows from SETH [IPZ98], asserts that there is some non-explicit λ > 1 such that 3-SAT on n
variables requires time λn. While SETH implies the existence of such λ > 1, it doesn’t tell us any-
thing about λ. In particular, it doesn’t provide us with a lower bound on λ greater than 1. Each
of the problems discussed above has a reduction from 3-SAT that preserves the size of the instance
up to a constant factor [IPZ98, CFK+15, Theorem 14.6]. Thus, under SETH (or even ETH), none
of these problems can be solved by algorithms running in time (λ′)n for some non-explicit λ′ > 1
which we cannot even bound away from 1.

The only currently known way to prove fine-grained and SETH-hardness results is via fine-
grained reductions. Such a reduction gives a conditional lower bound of λn on the complexity of a
computational problem for an explicit λ > 1. In this work, we (conditionally) rule out reduction-
based proofs of SETH-hardness which we emphasize in the title of the paper.

To simplify the presentation, we follow the terminology of previous works in this area and say
“a computational problem P is λn-SETH hard for λ > 1” when we mean the following. There
exists an explicit constant λ > 1 and a function δ := δ(ε) such that for every k and ε > 0, there
exists an algorithm A for k-SAT running in time 2(1−δ(ε))n, making t calls to an oracle for P with
input sizes n1, . . . , nt satisfying

t∑

i=1

λ(1−ε)ni ≤ 2(1−δ(ε))n .

In particular, this captures all known λn-SETH lower bounds in fine-grained complexity for ex-
plicit λ > 1.

On randomized reductions. While this work focuses on deterministic (i.e., non-randomized)
reductions, now we discuss why randomized SETH-hardness reductions would also be surpris-
ing. If one of the problems under consideration is SETH-hard under deterministic reductions,
then Theorems 1.1 and 1.2 imply that either NSETH is false (implying series-parallel circuit lower
bounds) or we have high arithmetic circuit lower bounds. In fact, the same result holds for zero-error
probabilistic reductions.

A randomized SETH-hardness reduction for any of the problems in the premises of Theorems 1.1
and 1.2 would either give us high arithmetic circuit lower bounds or a faster than 2n two-round
AM protocol for k-TAUT. While faster than 2n two-round AM protocols are not known to imply
circuit lower bounds, designing such a protocol for k-TAUT would still be a big achievement.
The celebrated work of Williams [Wil16] gives a constant-round AM protocol running in time 2n/2

for k-TAUT.2

Also, our result, together with the standard trick of simulating randomness by non-uniformity
(see [CGI+16, Lemma 4]), gives us that a randomized SETH-hardness reduction for any of the
problems in the premises of Theorems 1.1 and 1.2 implies either high arithmetic circuit lower
bounds or that NUNSETH (Non-unifrom NSETH, see [CGI+16, Definition 4])) is false.

2The standard transformation of a constant-round AM protocol into a two-round AM protocol suffers a quadratic
blow-up in size which results in a two-round protocol of trivial length 2n.
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1.3 Proof Overview

1.3.1 Non-parameterized Problems

We demonstrate our main result on the following example. Assume that the Hamiltonian Path

problem is 1.5n-SETH hard. We’ll prove one of the two circuit lower bounds: a super-linear lower
bound for Boolean series-parallel circuits computing a language from ENP or an n1.2 lower bound
on the size of arithmetic circuits computing an explicit n-variate polynomial of constant degree.
We note that the actual result proven in Theorem 1.1 rules out λn-hardness for every λ > 1 and is
capable of proving arithmetic circuit lower bounds of nγ for every γ > 1.

First we find a low-degree polynomial on exponentially-many variables that can be used to solve
any Hamiltonian path instance of a given size. We call this a polynomial formulation of Hamiltonian

Path.3 Then we show how to find a small arithmetic circuit computing this polynomial formulation.
After that, we give a non-deterministic algorithm for the k-TAUT problem, and conclude with
circuit lower bounds.

Polynomial formulations of Hamiltonian Path. First we give the following polynomial for-
mulation of Hamiltonian Path on a graph with node set [ℓ]. Without loss of generality, we assume
that ℓ is a multiple of 10. For every set S of ℓ/10 nodes, every node u ∈ S, and every node v 6∈ S,
we introduce a variable xS,u,v. Thus, in total we have t ≤

( ℓ
ℓ/10

)
· ℓ2 ≤ 20.47ℓ variables. Consider the

following degree-10 polynomial P of t variables. For each partition of [ℓ] = S1 ⊔ · · · ⊔ S10 into sets
of size ℓ/10, and for each v1 ∈ S1, . . . , v10 ∈ S10, and v11 ∈ [ℓ] we add the monomial

xS1,v1,v2 · xS2,v2,v3 · · · xS10,v10,v11 .

Now for an instance G of Hamiltonian path, where G is a graph on ℓ nodes, we assign the following
values to the t variables of the polynomial P . If there is a Hamiltonian path visiting each node of S
exactly once, starting at the node u and ending at a node neighboring v, then we set xS,u,v = 1,
otherwise we set xS,u,v = 0. Note that the polynomial P evaluates to 0 if and only if the original
graph has no Hamiltonian paths. Indeed, a Hamiltonian path can be partitioned into 10 parts
of length ℓ/10 with starting nodes v1, . . . , v10 such that all variables of the monomial xS1,v1,v2 ·
xS2,v2,v3 · · · xS10,v10,v11 are assigned ones. The converse is also true: if all variables of some monomial
are assigned ones, then this gives us a Hamiltonian path in G.

Time complexity of polynomial formulations. Now we bound the running time for comput-
ing the polynomial P . This polynomial can be constructed by listing all 10-tuples of (ℓ/10)-subsets

of [ℓ] together with nodes v1, . . . , v11, which can be done in time O
(( ℓ

ℓ/10

)10
ℓO(1)

)
≤ 24.7ℓ. This

polynomial is not particularly helpful for solving an instance of Hamiltonian Path on ℓ nodes since
the problem can be solved in time 2ℓℓO(1) while only constructing this polynomial takes time 24.7ℓ.
Nevertheless, we’ll later use the self-reducibility property of TAUT to reuse one polynomial to solve
exponentially many instances of Hamiltonian Path.

Let us now bound the running time for computing the assignment of the variables for an
instance G on ℓ nodes. In order to find the assignment of the variables, it’s sufficient to solve t

3In fact, our main result (Theorem 4.3) rules out SETH-hardness results for all problems that admit polynomial
formulations on cn variables of instances of size n for every c > 1.
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instances of Hamiltonian path on ℓ/10 nodes. Since each instance can be solved in time 2ℓ/10ℓO(1),
we bound the total running time by

t · 2ℓ/10ℓO(1) ≤

(
ℓ

ℓ/10

)
· 2ℓ/10 · ℓO(1) = O(20.47ℓ+ℓ/10) = O(1.49ℓ) .

Thus, in time 24.7ℓ we construct a degree-10 polynomial with at most t ≤ 20.47ℓ variables, such
that each instance of Hamiltonian path on ℓ nodes can be reduced in time 1.49ℓ to evaluating this
polynomial at a 0/1 point. Note that since the polynomial has 24.7ℓ monomials with coefficients
one, and we only evaluate it at 0/1 points, the maximum value we can obtain is ≤ 24.7ℓ, so we can
as well assume that our polynomial P is over Zp for 2 · 24.7ℓ ≤ p ≤ 4 · 24.7ℓ.

The first circuit lower bound. If the constructed polynomial P of t variables doesn’t have
arithmetic circuits of size t1.2, then we have our first circuit lower bound. Indeed, we have an
explicit family of constant-degree t-variate polynomials Pt that require arithmetic circuits of size at
least t1.2. To see that this family of polynomials is explicit, recall that this t-variate polynomial can

be constructed in time polynomial in the number of variables: O
(( ℓ

ℓ/10

)10
ℓO(1)

)
≤ t11. Thus, in

the following we assume that the polynomial P does have circuits of size t1.2. From this (together
with the assumed 1.5n-SETH hardness of Hamiltonian Path) we will prove the second circuit lower
bound. In fact, we will refute NSETH, which, as discussed earlier, implies a super-linear circuit
lower bound for Boolean series-parallel circuits [JMV15]. Therefore, in the rest of this section, we
will show how to solve the k-TAUT problem in non-deterministic time 2(1−ε)n for constant ε > 0.

Approximation of MACP. We have a t-variate polynomial P that solves Hamiltonian Path

on graphs with ℓ nodes, and we know that this polynomial has circuits of size t1.2, but we don’t
have those circuits. We use the result of Strassen [Str73b] that asserts that if there is a circuit of
size t1.2 computing a degree-10 polynomial, then there exists a circuit of size O(t1.2) computing
the same polynomial, where every gate of the circuit computes a polynomial of degree at most 10
(see Corollary 3.4). We use the power of non-deterministic algorithm to guess such a circuit, but
we need to verify that the guessed circuit indeed computes the polynomial P . For this, we write
down the polynomials computed at each gate of the circuit. Since in our modified circuit, each gate
computes a degree-10 polynomial, each such polynomial can be written in time O(t10). Performing
all operations (modulo p) over the polynomials in this circuit will take time O(t1.2 · t20 · log2 p) ≤
221.2·0.47ℓ · ℓO(1) ≤ 210ℓ. By comparing the list of the monomials of the polynomial P with the
monomials computed at the output gate, we verify the guessed circuit.

Non-deterministic algorithm for k-TAUT. Below we present an algorithm solving every k-
TAUT instance on n variables in non-deterministic time 2(1−ε)n for constant ε independent of k.
Recall that this refutes NSETH and, thus, implies the second circuit lower bound.

We consider all assignments of the first (1 − α)n Boolean variables for α = 1/20. This gives
us a set of 2(1−α)n instances of k-TAUT on αn variables each. Solutions to these 2(1−α)n instances
will give us the solution to the original instance. Each of these instances of k-TAUT will later
be reduced (via the assumed fine-grained reduction from k-SAT to Hamiltonian Path) to (possi-
bly exponentially many) instances of Hamiltonian Path. Since we assume 1.5n-SETH hardness of
Hamiltonian Path, an instance of k-TAUT on αn variables must be reduced to instances of Hamil-

tonian Path on at most ℓ nodes, where ℓ satisfies 1.5ℓ ≤ 2αn. In particular, ℓ < n/11. In this proof
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overview we assume for simplicity that all instances produced by the fine-grained reduction have
size ℓ, (in the full proof of Theorem 4.3 we generate ℓ different polynomials, one for each integer
up to ℓ, to solve Hamiltonian Path instances of any size ≤ ℓ).

First, we construct the polynomial P that solves the instances of Hamiltonian Path on ℓ nodes.
Recall that we can construct this polynomial in time 24.7ℓ ≪ 1.9n (we only need to write down
this polynomial once, and then we will use this polynomial for all instances of Hamiltonian Path).
Then we find a circuit of size O(t1.2) computing P in non-deterministic time 210ℓ ≪ 1.9n. Now
we are ready to solve all 2(1−α)n instances of k-TAUT on αn variables. Indeed, each such instance
we reduce to (a number of instances of) Hamiltonian Path on ℓ nodes. We find the assignment
of the variables of P in time 1.49ℓ, and evaluate the circuit of size O(t1.2) modulo p in time
O(t1.2 log2 p) ≤ 1.49ℓ. Since we solve each instance of Hamiltonian Path on ℓ nodes in time 1.49ℓ,
1.5n-SETH hardness of Hamiltonian Path implies a 2(1−δ)αn-algorithm for k-TAUT on αn variables
(for constant α > 0 independent of k). Therefore, each of the 2(1−α)n instances of k-TAUT is solved
in time 2(1−δ)αn, and the total (non-deterministic) running time to solve the original instance of
k-TAUT is 2(1−α)n · 2(1−δ)αn = 2(1−αδ)n.

Summary. We start by showing that Hamiltonian Path can be expressed as a constant-degree
polynomial P in exponentially many variables. That is, checking whether the input graph has a
Hamiltonian path boils down to evaluating P .

Assuming that P can be computed by a small arithmetic circuit C (if this is not the case,
we have an arithmetic circuit lower bound), we show that there exists a homogeneous circuit C ′

computing P that is not much larger than C. We guess C ′ non-deterministically. The fact that C ′

is homogeneous and that P has constant degree allows us to efficiently verify the correctness of C ′

by checking the computation at each gate manually.
The circuit C ′ allows us to solve Hamiltonian Path efficiently. Since we have a fine-grained

reduction from k-SAT to Hamiltonian Path, this implies a fast non-deterministic algorithm for
k-TAUT. The obtained algorithm refutes NSETH, which, in turn, gives super-linear lower bounds
for Boolean series-parallel circuits.

1.3.2 Parameterized Problems

In the (parameterized) k-Path problem, the goal is to check if the given graph on n nodes contains
a simple path on k nodes. Similarly to the case of Hamiltonian Path, the best known algorithm for
k-Path runs in time 2k [Wil09]. The result sketched in the previous section (conditionally) rules out
λn-SETH hardness of Hamiltonian Path for every λ > 1. Yet, this leaves a possibility to prove a 2k

lower bound on the complexity of k-Path for some function k := k(n). We extend our framework to
parameterized problems to prove the same barriers for SETH-hardness for parameterized problems.

While most of the machinery from the previous section extends to the case of parameterized
problems, the new issue arises in the polynomial formulations of the problems. Indeed, if we apply
the polynomial formulation from the previous section to the k-Path problem, then we inevitably
have at least

(
n

k/10

)
≥ nΩ(k) variables. Such a polynomial formulation can only rule out

(
nΩ(k)nO(1)

)
-

SETH hardness results, which are of no interest since the problem can be solved in time 2knO(1).
To overcome this issue, we design a different polynomial formulation of the parameterized k-Path
problem. This formulation uses a certain pseudorandom object called a splitter, on which we
elaborate below.
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Splitters. A family H of functions f : [n] → [k] is a k-perfect hash family if for every S ⊆ [n] of
size |S| = k, there is a function h ∈ H which is injective on S. An (n, k, ck)-splitter is a relaxation
of this notion where the functions f have range [ck] for a constant c ≥ 1. There are known
constructions of splitters [NSS95] and k-perfect hash families [AYZ95] of size ek(1+o(1))k log n, but

our polynomial formulations require splitters of size e
k

g(c) for an unbounded function g. While a

simple probabilistic argument shows that a set of ≈ e
k
c ·k log n random functions forms an (n, k, ck)-

splitter with high probability, in Section 5, we show how to efficiently construct an explicit family

of such functions of size e
k
c
(1+o(1)) · k log n.

Polynomial formulations. The color-coding technique, introduced in [AYZ95], solves k-Path
on a graph with node set [n] as follows: assign a random color c ∈ [k] to every node; then, all
nodes of a k-path receive different colors with probability about e−k; at the same time, one can
find such a colorful path in time 2knO(1). This gives us a randomized 2O(k)nO(1)-time algorithm for
k-Path. This algorithm can be derandomized by utilizing a k-perfect family H of hash functions
f : [n] → [k]: go through all f ∈ H and assign the color f(v) to every node v [AYZ95]. Since H
guarantees that for every k-path there is a coloring f ∈ H that assigns different colors to all nodes
of the path, one of the hash functions f will lead to a k-path. [AYZ95] gives a construction of H
of size ek(1+o(1)), but this would result in a polynomial formulation with t ≥ ek(1+o(1)) variables.
Recall that in order to prove a lower bound of tγ on the size of arithmetic circuits, we need tγ to
be much less than the assumed complexity of k-Path. Thus, for our purposes, we need a family of
hash function of much smaller size. To achieve this, we allow a larger number of colors. This will
decrease the number of variables as desired at the cost of increasing the degree and the time needed
to compute the coefficients of the polynomial. Fortunately, our construction is robust enough to
tolerate this drawback.

We take a family H of (n, k, ck)-splitters of size e
k
c that can be computed in time 29knO(1) de-

scribed above. Given a coloring f : [n] → [ck], we find an f -colorful k-path in time 2cknO(1) [AYZ95].
The main idea of the polynomial formulation then is the following. For a coloring f : [n] → [ck],

an f -colorful k-path π can be partitioned into c paths π1, . . . , πc such that each path uses at most
k/c colors. Then, a partition π1, . . . , πc is valid if the paths are color-disjoint and there is an edge
from the last node of πi to the first node of πi+1, for all i ∈ [c − 1]. Such valid paths will lead to

monomials of degree c, and the resulting polynomial will have only e
k
c nO(1) variables for arbitrarily

large constant c.

1.4 Related Work

The closest in spirit to our result is the work of Carmosino et al. [CGI+16]. The work [CGI+16]
proves that if APSP, 3-SUM, or one of a few other problems is SETH-hard, then NSETH is false.
In this paper, we relax the implication but prove a stronger barrier for a much wider class of
problems: if one of the problems listed in Open Problem 1 is SETH-hard, then NSETH is false
or we have arbitrarily large polynomial lower bounds for arithmetic problems. Another important
difference between [CGI+16] and the present work is that [CGI+16] rules out some hardness results
(say, n3/2-SETH hardness of 3-SUM), while the present work rules out all exponential SETH-
hardness results λn for an explicit constant λ > 1.

The work of Kabanets and Impagliazzo [KI03] is the closest one to our main result in terms of
techniques. In fact, we view our main result (Theorem 4.3) as a fine-grained version of [KI03] with
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the following modifications. The work [KI03] shows that if Polynomial Identity Testing (PIT) has
a deterministic polynomial time algorithm, then either NEXP 6⊆ P/poly, or the Permanent problem
requires super-polynomial size arithmetic circuits. To show this, they guess small arithmetic circuits
and verify them using the assumed deterministic algorithm for PIT and downward self-reducibility
of Permanent. In this paper, efficient verification is possible due to the low degree of the polynomial
computed by the circuit and the homogenization trick allowing us to consider only circuits with a
specific structure.

Finally, several works provided efficient algorithms for problems studied in fine-grained com-
plexity (e.g., Grønlund and Pettie [GP18] for 3-SUM and Williams [Wil16] for Multipoint Circuit

Evaluation) using self-reducibility of the problem and a construction that improves on the trivial
running time for small instances of the problem. In this paper, we also use the self-reducibility
trick: first, in the allocated time we construct arithmetic circuits solving all instances of k-SAT on
αn variables significantly faster than in 2αn, and then we reduce an n-variate instance of k-SAT to
a series of instances on αn variables for a sufficiently small α > 0.

1.5 Structure

The rest of the paper is organized as follows. In Section 2, we give all necessary background material,
including the definitions of SETH-hardness and polynomial formulations. In Section 3, we define
an approximate version of the Minimum Arithmetic Circuit Problem (MACP), and provide a non-
deterministic algorithm for this version of the problem. In Section 4, we prove the main result of
this paper: SETH-hardness of a problem admitting polynomial formulations would imply one of
the two aforementioned circuit lower bounds. Section 5 contains a construction of a pseudorandom
object needed for certain polynomial formulations: deterministic splitters over alphabets of linear
size. In Section 6, we give polynomial formulations of all problems considered in this paper. Finally,
Appendix A contains proofs of technical claims omitted in the main part of the paper.

2 Preliminaries

For two sets S and T , by S ⊔ T we denote their disjoint union. All logarithms in this paper
are base 2, i.e., log 2n = n. Recall that the O∗(·) notation suppresses polynomial factors, e.g.,
n22n = O∗(2n).

We use square brackets in two ways: for a positive integer p, [p] = {1, . . . , p}; for a predicate P ,
[P ] = 1 if P is true and [P ] = 0 otherwise (this is Iverson bracket).

2.1 Boolean Circuits

Definition 2.1. A Boolean circuit C with variables x1, . . . , xn is a directed acyclic graph as follows.
Every node has in-degree zero or two. The in-degree zero nodes are labeled either by variables xi or
constants 0 or 1. The in-degree two nodes are labeled by binary Boolean functions that map {0, 1}2

to {0, 1}. The only gate of out-degree zero is the output of the circuit.

A Boolean circuit C with variables x1, . . . , xn computes a Boolean function f : {0, 1}n → {0, 1}
in a natural way. We define the size of C as the number of gates in it, and the Boolean circuit
complexity of a function as the minimum size of a circuit computing it.
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A circuit is called series-parallel if there exists a numbering ℓ of the circuit’s nodes such that for
every wire (u, v), ℓ(u) < ℓ(v), and no pair of wires (u, v), (u′, v′) satisfies ℓ(u) < ℓ(u′) < ℓ(v) < ℓ(v′).

The best known lower bound on the size of a Boolean circuit for functions in P

is 3.1n − o(n) [LY22]. In fact, this bound remains the best known bound even for the much larger
class of languages ENP even against the restricted model of series-parallel circuits. A long-standing
open problem in Boolean circuit complexity is to find an explicit language that cannot be computed
by linear-size circuits from various restricted circuit classes [Val77, AB09, Frontier 3].

Open Problem 2. Prove a lower bound of ω(n) on the size of Boolean series-parallel circuits
computing a language from ENP.

2.2 Arithmetic Circuits

Definition 2.2. An arithmetic circuit C over a ring R and variables x1, . . . , xn is a directed acyclic
graph as follows. Every node has in-degree zero or two. The in-degree zero nodes are labeled either
by variables xi or elements of R. The in-degree two nodes are labeled by either + or ×. Every gate
of out-degree zero is called an output gate.

We will typically take R to be Z or Zp for a prime number p. A single-output arithmetic circuit C
over R computes a polynomial over R in a natural way. We say that C computes a polynomial
P (x1, . . . , xn) if the two polynomials are identical (as opposed to saying that C computes P if the
two polynomials agree on every assignments of (x1, . . . , xn) ∈ Rn). We define the size of C as the
number of edges in it, and the arithmetic circuit complexity of a polynomial as the minimum size
of a circuit computing it.

While it’s known [Str73a, BS83] that the polynomial xr1 + . . . + xrn requires arithmetic circuits
over F of size Ω(n log(r)) (if r doesn’t divide the characteristic of F), one of the biggest challenges
in algebraic complexity is to prove stronger lower bounds on the arithmetic circuit complexity of
an explicit polynomial of constant degree.

Open Problem 3. For a constant γ > 1, prove a lower bound of nγ on the arithmetic circuit
complexity of a constant-degree polynomial that can be constructed in polynomial time nO(1).

2.3 SETH Conjectures

Below, we state rigorously two SETH-conjectures that we will use in this work.

• Strong exponential time hypothesis (SETH) [IPZ98, IP99]: for every ε > 0, there exists k
such that

k-SAT 6∈ TIME[2(1−ε)n] .

• Non-deterministic SETH (NSETH) [CGI+16]: for every ε > 0, there exists k such that

k-TAUT 6∈ NTIME[2(1−ε)n] ,

where k-TAUT is the language of all k-DNFs that are tautologies.

[JMV15] proved that if SETH is false, then ENP requires series-parallel Boolean circuits of size ω(n).
[CGI+16, Corollary B.3.] extended this result and showed that refuting NSETH is sufficient for
such a circuit lower bound.

Theorem 2.3 ([CGI+16, Corollary B.3.]). If NSETH is false then ENP requires series-parallel
Boolean circuits of size ω(n).
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2.4 Fine-grained Reductions

In this section we rigorously define fine-grained reductions and SETH-hardness. First, we give
the definition of fine-grained reductions from [Vas15, Definition 6] with a small modification that
specifies the dependence of δ on ε (we’ll need this modification when defining SETH-hardness as
SETH-hardness is a sequence of reductions from k-SAT for every value of k).

Definition 2.4 (Fine-grained reductions). Let P,Q be problems, p, q : Z≥0 → Z≥0 be non-decreasing
functions and δ : R>0 → R>0. We say that (P, p(n)) δ-fine-grained reduces to (Q, q(n)) and write
(P, p(n)) ≤δ (Q, q(n)), if for every ε > 0 and δ = δ(ε) > 0, there exists an algorithm A for P with
oracle access to Q, a constant d, a function t(n) : Z≥0 → Z≥0, such that on any instance of P of
size n, the algorithm A

• runs in time at most d(p(n))1−δ;

• produces at most t(n) instances of Q adaptively: every instance depends on the previously
produced instances as well as their answers of the oracle for Q;

• the sizes ni of the produced instances satisfy the inequality

t(n)∑

i=1

q(ni)
1−ε ≤ d(p(n))1−δ .

We say that (P, p(n)) fine-grained reduces to (Q, q(n)) and write (P, p(n)) ≤ (Q, q(n)) if
(P, p(n)) ≤δ (Q, q(n)) for some function δ : R>0 → R>0.

It is not difficult to see that if (P, p(n)) ≤ (Q, q(n)), then any improvement over the running
time q(n) for the problem Q implies an improvement over the running time p(n) for the problem P :
for any ε > 0, there is δ > 0, such that if Q can be solved in time O(q(n)1−ε), then P can be solved
in time O(p(n)1−δ).

Definition 2.5 (SETH-hardness). For a constant λ > 1, we say that a problem P is λn-SETH-hard
if there exists a function δ : R>0 → R>0 and for every k ∈ N,

(k-SAT, 2n) ≤δ (P, λn) .

If a problem P is λn-SETH-hard, then any algorithm solving P in time λ(1−ε)n implies an
algorithm solving k-SAT in time 2(1−δ(ε))n for all k, thus, breaking SETH.

We now similarly define SETH-hardness of parameterized problems.

Definition 2.6 (SETH-hardness of parameterized problems). Let P be a parameterized problem
with a parameter k, λ > 1 be a constant, and δ : R>0 → R>0. We say that P is λk-SETH-hard if for
every q, d ∈ N, ε > 0, and δ = δ(ε) > 0, there exists an algorithm A for q-SAT with oracle access
to P , a function t(n) : Z≥0 → Z≥0, such that on any instance of q-SAT of size n, the algorithm A

• runs in time at most O(2(1−δ)n);

• produces at most t(n) instances of P adaptively: every instance depends on the previously
produced instances as well as their answers of the oracle for P ;
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• the length ℓi and parameters ki of the produced instances satisfy the inequality

t(n)∑

i=1

λ(1−ε)ki · ℓdi ≤ O(2(1−δ)n) .

It particular, if a parameterized problem P is λk-SETH-hard, then any algorithm solving P in
time λ(1−ε)k|x|d implies an algorithm solving q-SAT in time O(2(1−δ(ε))n) for all q, thus, breaking
SETH.

2.5 Polynomial Formulations

In this work, we consider polynomials over a ring R, where R is typically Z or Zp for a prime
number p. By a family of polynomials P we mean an infinite sequence of polynomials Pi1 , Pi2 , . . . ,
such that i1 < i2 < · · · and Pn is a multivariate polynomial depending on n variables. We say that
P has degree d(n) if, for every n, every monomial of Pn has total degree at most d(n).

Definition 2.7 (∆-explicit family of polynomials). For a constant ∆, we say that P is ∆-explicit,
if, for all n, the degree of Pn is at most ∆ and all coefficients of Pn can be computed (simultaneously)
in time O(n∆).

Equipped with this definition, we’re in a position to state the required properties of poly-
nomial formulations that will allow us to prove barriers for hardness proofs. For the case of
non-parameterized problems, we define polynomial formulations as follows.

Let A be a computational problem, and for every n ∈ N, let In be the set of instances of A of
size n. A polynomial formulation of a computational problem A is a ∆-explicit family of polynomials
P = (Ps)s≥1 and a family of maps φ = (φn)n≥1 where φn : In → Z

s(n) satisfying the following. In
order to check if x ∈ In is a yes instance of A, it suffices to map y = φ(x) ∈ Z

s(n) and evaluate the
corresponding polynomial Ps(n)(y).

Definition 2.8 (Polynomial formulations). Let A be a computational problem and for every n ∈ N,
let In be the set of instances of A of size n. Let ∆ be a constant, T : N → N be a time bound, and
P = (P1, P2, . . . ) be a ∆-explicit family of polynomials over Z. We say that P is a ∆-polynomial
formulation of A of complexity T , if there exist

• a non-decreasing function s : N → N satisfying s(n) ≤ T (n), and an algorithm computing s(n)
in time T (n);

• a family of mappings φ = (φ1, φ2, . . . ), where φn : In → Z
s(n), and an algorithm evaluating

φn at any point in time T (n)

such that the following holds. For every n ∈ N and every x ∈ In,

• Ps(n)(φn(x)) 6= 0 ⇔ x is a yes instance of A ;

• |Ps(n)(φn(x))| < 2s(n).

In order to define polynomial formulations of parameterized problems, we need to make the
following changes. An instance of the problem is now a pair (x, k) ∈ In × N, where k is the
parameter. The function s now depends on x and the value of k. Similarly, each φn now also
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depends on k. The time bounds on the evaluation of s and φ are now T (k)|x|O(1) rather than T (n).
Since the size n of the instance x doesn’t appear in these time bounds anymore (it’s now replaced
by the length of the bit representation |x| of x), we don’t need the index n in φn, and we merge
the functions (φ1, φ2, . . .) into one function φ.

Definition 2.9 (Polynomial formulations of parameterized problems). Let A be a parameterized
computational problem and let I ×N be the set of all instances of A, where for an instance (x, k) ∈
I × N, k is the value of the parameter. Let ∆ be a constant, T : N → N be a time bound, and
P = (P1, P2, . . . ) be a ∆-explicit family of polynomials over Z. We say that P is a ∆-polynomial
formulation of A of complexity T , if there exist

• a function s : I × N → N satisfying s(x, k) ≤ T (k)|x|∆, and an algorithm computing s(x, k)
in time T (k)|x|∆ ;

• a function φ : I × N → Z
∗ such that φ(x, k) ∈ Z

s(x,k), and an algorithm computing φ(x, k)
in time T (k)|x|∆

such that the following holds. For every (x, k) ∈ I × N,

• Ps(x,k)(φ(x, k)) 6= 0 ⇔ (x, k) is a yes instance of A ;

• |Ps(x,k)(φ(x, k))| < 2T (k)|x|∆ .

2.6 Computational Problems

In this work, we show barriers to proving hardness for the following non-parameterized and param-
eterized problems.

Non-parameterized problems. For each problem below, the specified parameter n is used as
the default size measure when bounding the complexity of the problem. It is well known that each
of these problems can be solved in time 2O(n).

• k-SAT: given a formula F in k-CNF over n variables, check if F has a satisfying assignment.

• MAX-k-SAT: given a formula F in k-CNF over n variables and an integer t, check if it is
possible to satisfy at least t clauses of F .

• Hamiltonian Path: given a directed graph G with n nodes, check whether G contains a cycle
visiting every node exactly once.

• Graph Coloring: given a graph G with n nodes and an integer t, check whether G can
be colored properly using at most t colors.

• Set Cover: given a set family F ⊆ 2[n] of size nO(1) and an integer t, check whether one can
cover [n] with at most t sets from F .

• Independent Set: given a graph G with n nodes and an integer t, check whether G contains
an independent set of size at least t.

• Clique: given a graph G with n nodes and an integer t, check whether G contains a clique
of size at least t.
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• Vertex Cover: given a graph G with n nodes and an integer t, check whether G contains
a vertex cover of size at most t.

• 3d-Matching: given a 3-uniform 3-partite hypergraph G with parts of size n and an integer t,
check whether G contains a matching of size at least t.

Parameterized problems. Each of the problems below comes with a parameter k and we are
interested to know how the complexity of the problem grows as a function of the input length and k.
We say that a problem with a parameter k belongs to the class FPT if it can be solved in time
O∗(f(k)) for some computable function f . Similarly to the case of non-parameterized problems,
we denote the size of an instance x of a problem (the number of nodes in the input graph, the
number of variables in the input formula) by n, and we denote the length (the length of the binary
representation of the instance x) by |x|.

• k-Path: given a graph G, check whether G contains a simple path with k nodes.

• k-Vertex Cover: given a graph G, check whether G contains a vertex cover of size at most k.

• k-Tree: given a graph G and a tree T with k nodes, check whether there exists a (not
necessarily induced) copy of T in G.

• k-Steiner Tree: given a graph G(V,E) with (integer non-negative) edge weights and a subset
T ⊆ V of its nodes of size k, and an integer 0 ≤ t ≤ |V |O(1), check whether there is a tree
in G of weight at most t containing all nodes from T .

• k-Internal Spanning Tree: given a graph G, check whether there is a spanning tree of G with
at least k internal nodes.

• k-Leaf Spanning Tree: given a graph G, check whether there is a spanning tree of G with
at least k leaves.

• k-Nonblocker: given a graph G, check whether G contains a subset of nodes of size at least k
whose complement is a dominating set in G.

• k-Path Contractibility : given a graph G, check whether it is possible to contract at most
k edges in G to turn it into a path.

• k-Cluster Editing: given a graph G, check whether it is possible to turn G into a cluster
graph (a set of disjoint cliques) using at most k edge modifications (additions and deletions).

• k-Set Splitting: given a set family F ⊆ 2[n] of size nO(1), check whether there exists a partition
of [n] into two sets that splits at least k sets from F .

3 Minimum Arithmetic Circuit Problem

In this section, we show that for polynomials of constant degree one can find arithmetic circuits of
size close to optimal in nondeterministic polynomial time.
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Definition 3.1. Let P = (P1, P2, . . . ) be a family of polynomials. The minimum arithmetic circuit
problem for P, denoted by MACPP(n, s), is: given n, s ∈ N, find an arithmetic circuit of size at
most s computing Pn, or report that there is no such circuit.

It is known that when P is the family of permanent polynomials, MACPP can be solved in time
(ns)O(1) either by an MA-protocol or by a nondeterministic Turing machine with an oracle access
to the polynomial identity testing problem (PIT) [KI03]. In our setting, we do not have oracle
access to PIT nor do we have any randomness. To make up for that, we consider the following
approximate version of MACP.

Definition 3.2. Let p be a prime number, P = (P1, P2, . . . ) be a family of polynomials over Zp,
and c ≥ 1 be an integer parameter. The problem Gap-MACPP,c,p(n, s) is: given n, s ∈ N, output
an arithmetic circuit over Zp of size at most cs computing Pn, if Pn can be computed in Zp by
a circuit of size at most s; output anything otherwise.

The reason we allow an abitrary output in case Pn does not have a circuit of size s is the following.
Right after solving the Gap-MACP problem, we will verify that the found circuit is correct. Thus,
if instead of a circuit of size cs computing Pn, we are given a circuit that doesn’t compute Pn

correctly, we will reject it in the verification stage. The parameter p here is needed to have control
over the maximum value of coefficients when expanding the guessed circuit as a polynomial.

We will use the following result proven by Strassen [Str73b] (see also [BCS97, Chapter 7.1] or
[SY10, Theorem 2.2]). Recall that a polynomial is homogeneous if all its monomials have the same
degree. We say that a circuit is homogeneous if all its gates compute homogeneous polynomials.
For a polynomial P , the homogeneous part of P of degree i is the sum of all monomials of P of
degree exactly i.

Theorem 3.3 ([Str73b]). There exists a constant µ′ > 0 such that the following holds. If a degree-∆
polynomial P can be computed by an arithmetic circuit of size s, then there exists a homogeneous
circuit C ′ of size at most µ′∆2s computing P such that the ∆ + 1 outputs of C ′ compute the
homogeneous parts of P .

We use Theorem 3.3 to conclude that at the expense of increasing the circuit size by a factor
of O(∆2), we can assume that an arithmetic circuit computing a degree-∆ polynomial contains
only gates computing polynomials of degree at most ∆.

Corollary 3.4. There exists a constant µ > 0 such that the following holds. If a degree-∆ poly-
nomial P can be computed by an arithmetic circuit of size s, then P can be computed by a (single-
output) circuit C of size at most µ∆2s such that all gates of C compute polynomials of degree at
most ∆.

Proof. In order to construct the circuit C we take the homogeneous circuit C ′ guaranteed by
Theorem 3.3, remove all gates computing polynomials of degree greater than ∆, and sum up all
∆ + 1 output gates of C ′ in the output of C. Since sums and products of degree-(∆ + 1) homoge-
neous polynomials can’t compute non-trivial polynomials of degree ≤ ∆, removing gates computing
polynomials of degree greater than ∆ doesn’t affect the output gates of C ′. Since the outputs of
C ′ compute the homogeneous parts of P , the output of C computes P , which finishes the proof of
the corollary.

We now prove that for polynomials of bounded degree, Gap-MACP can be solved in non-
deterministic polynomial time.
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Lemma 3.5. There exists a constant µ > 0 such that for every ∆-explicit family of polynomials P
and every prime number p,

Gap-MACPP,µ∆2,p(n, s) ∈ NTIME[O(∆2sn2∆ log2 p)] .

Proof. We present a non-deterministic algorithm that, given a polynomial P of circuit complexity s,
finds a circuit of size at most cs for c = µ∆2.

First we note that Corollary 3.4 guarantees the existence of a circuit C over Zp of size cs
computing P such that each gate of C computes a polynomial of degree at most ∆.

We non-deterministically guess such a circuit C, and verify if it computes P correctly. If it
does, we output C, and we output an empty circuit otherwise. It remains to show that in the
specified time we can verify that C computes P . To do this, we start with the circuit inputs and
proceed to its output, and write down the polynomial over Zp computed by each gate as a sum
or product of polynomials of its input gates. There are at most 2n∆ monomials in a polynomial
of degree at most ∆. Computing sums and products of such polynomials boils down to at most
O(n2∆) arithmetic operations with their coefficients. As every coefficient of a polynomial over Zp

is specified by log p bits, any such arithmetic operation takes time O(log2 p). Putting it all together,
we expand each of the µ∆2s gates, expanding each gate takes O(n2∆) arithmetic operations, each
arithmetic operation takes time O(log2 p). Thus, the total time of expanding C in Zp is

O(µ∆2s · n2∆ · log2 p) .

To nondeterministically solve Gap-MACPP,µ∆2,p(n, s), we guess C and expand it in Zp as dis-
cussed above. Since Pn is from a ∆-explicit family P, it can be written as a sum of monomials
in time O(n∆) (recall Definition 2.7). Then, it remains to compare the coefficients of the two
sequences of monomials.

4 Main Results

In this section, we state the main results of this paper. First, we state Lemmas 4.1 and 4.2 asserting
that every problem defined in Section 2.6 admits polynomial formulations, we’ll prove these lemmas
in Sections 6.1 and 6.2. Then, in Sections 4.1 and 4.2 we prove barriers to proving hardness results
for non-parameterized and parameterized problems admitting polynomial formulations. Finally, we
conclude that such barriers hold for for all problems from Section 2.6.

Lemma 4.1. For every c > 1, there is ∆ = ∆(c), such that each of the following problems

k-SAT, MAX-k-SAT, Hamiltonian Path, Graph Coloring, Set Cover, Independent Set,
Clique, Vertex Cover, 3d-Matching

admits a ∆-polynomial formulation of complexity cn.

Lemma 4.2. For every c > 1, there is ∆ = ∆(c), such that each of the following parameterized
problems

k-Path, k-Vertex Cover, k-Tree, k-Steiner Tree, k-Internal Spanning Tree, k-Leaf Span-
ning Tree, k-Nonblocker, k-Path Contractibility, k-Cluster Editing, k-Set Splitting

admits a ∆-polynomial formulation of complexity ck.
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4.1 Non-parameterized Problems

In the theorem below we prove that if a problem admits constant-degree polynomial formulations
of complexity 2γn for every γ > 0, then SETH-hardness of the problem would imply a circuit lower
bound.

Theorem 4.3. Let A be a computational problem. Assume that for every c > 1, there is ∆ = ∆(c)
such that A admits a ∆-polynomial formulation of complexity cn. If A is λn-SETH-hard for a
constant λ > 1, then at least one of the following circuit lower bounds holds:

• ENP requires series-parallel Boolean circuits of size ω(n);

• for every constant γ > 1, there exists an explicit family of constant-degree polynomials over Z
that requires arithmetic circuits of size Ω(nγ).

Proof. Let λ > 1 be the constant from the theorem statement, γ > 1 be an arbitrary constant,
and σ = log(λ)/(6γ). For n ∈ N, let In be the set of all instances of A of size n. Let P be a ∆-
polynomial formulation of A of complexity 2σn, for constant ∆ = ∆(σ) > 0. We assume that A is
λn-SETH-hard: there is a function δ : R>0 → R>0 such that for every k ∈ N, (k-SAT, 2n) ≤δ (P, λn).

We’ll prove that at least one of the two circuit lower bounds holds. If P = (Pt)t≥1 does not have
arithmetic circuits over Z of size tγ for infinitely many values of t, then we have an explicit family of
constant-degree polynomials that requires arithmetic circuits of size Ω(tγ). Hence, in the following
we assume that P has arithmetic circuits over Z of size ctγ for all values of t for a constant c > 0.
Under this assumption, we design a non-deterministic algorithm solving k-TAUT in time 2(1−ε)n

for every k. This contradicts NSETH and, by Theorem 2.3, implies a super-linear lower bound on
the size of series-parallel circuits computing ENP.

Let δ0 = δ(1/2) ∈ (0, 1) where δ is the function from the SETH-hardness reduction for A.
Let α = 1

γ+2∆+8 , L = 2(1 − δ0)αn/ log(λ), and T = 2σL. The meaning of these constants is the
following. We will start with an instance of the k-TAUT problem on n variables, reduce it to
2(1−α)n instances of k-TAUT on αn variables each. Then we’ll use the fine-grained reduction from
k-SAT to the problem A on instances of size ℓ ≤ L. Finally, we’ll use the polynomial formulation
of A to reduce instances of size ℓ to polynomials with t ≤ T variables.

Let F be a k-DNF formula over n variables. In order to solve F , we branch on all but αn vari-
ables. This gives us 2(1−α)n k-DNF formulas. By solving k-SAT on the negations of all of these
formulas, we solve k-TAUT on the original formula F .

We now apply the (k-SAT, 2n) ≤δ (A,λn) fine-grained reduction to (the negation of) each of the
resulting formulas, which gives us a number of instances of A. Let ℓ be the largest size of these
instances. From Definition 2.5, we know that for ε = 1/2 and δ0 = δ(1/2) > 0, λℓ/2 = λ(1−ε)ℓ <
2(1−δ0)αn, so each instance of A indeed has size less than ℓ < 2(1 − δ0)αn/ log(λ) = L.

Since P is a polynomial formulation of A of complexity 2σn, there exist s : N → N, s(ℓ) ≤ 2σℓ

and φ = (φ1, φ2, . . . ) (computable in time 2σL) such that for every ℓ and every x ∈ Iℓ,

• Ps(ℓ)(φℓ(x)) 6= 0 iff x is a yes instance of A;

• |Ps(ℓ)(φℓ(x))| < 2s(ℓ).

Using P, we will solve all instances of A in two stages: in the preprocessing stage (which takes
place before all the reductions), we guess efficient arithmetic circuits for polynomials Pt for all
t ≤ T , in the solving stage, we solve all instances of A using the guessed circuits. Note that we’ll
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be using the polynomials to solve instances of A resulting from k-SAT instances on αn variables.
Since L is the largest size of such an instance of A, we have that each such instance is mapped to a
polynomial with at most T = s(L) ≤ 2σL variables. Therefore, finding efficient arithmetic circuits
for polynomials Pt for all t ≤ T will be sufficient for solving the k-SAT instances of size αn.

Preprocessing. For every t ≤ T , we find a prime pt in the interval 2t+1 ≤ pt ≤ 2t+2 in non-
deterministic time O(t7) [AKS04, LP19].

Now for every t ≤ T , we reduce all coefficients of the polynomial Pt modulo pt to obtain a
polynomial Qt over Zpt, and let Q = (Q1, Q2, . . .). For every t ≤ T , we now non-deterministically
solve Gap-MACPQ,µ∆2,pt(t, ct

γ) using Lemma 3.5. Since we assume that P has arithmetic circuits
over Z of size ctγ , we have that Q has arithmetic circuits over Zpt of this size. Thus, we obtain
arithmetic circuits Ct of size at most

cµ∆2tγ (1)

computing Qt over Zp for all t ≤ T . Since Ct computes Qt correctly in Zp and |Ps(ℓ)(φℓ(x))| <

2s(ℓ) ≤ ps(ℓ)/2 for all x ∈ Iℓ, we can use Ct to solve A for every instance size ℓ ≤ L. By Lemma 3.5,
Gap-MACPQ,µ∆2,pt(t, ct

γ) can be solved in (non-deterministic) time

O
(
∆2 · ctγ · t2∆ · log2(pt)

)
= O

(
T γ+2∆+2

)
.

The total (non-deterministic) running time of the preprocessing stage is then bounded from above
by the time needed to find T prime numbers, write down the corresponding explicit polynomials
modulo pt, and solve T instances of Gap-MACP:

O
(
T (T 7 + T∆+2 + T γ+2∆+2)

)
= O

(
T γ+2∆+8

)
= O

(
2(1−δ0)n

)
, (2)

where the last equality holds due to T = 2σL, L = 2(1 − δ0)αn/ log(λ), σ = log(λ)/(6γ), and
α = 1

γ+2∆+8 .

Solving. In the solving stage, we solve all 2(1−α)n instances of k-SAT by reducing them to A
and using efficient circuits found in the preprocessing stage. For an instance x of A of size ℓ, we
first transform it into an input of the polynomial y = φℓ(x) ∈ Z

s(ℓ). Both s(ℓ) and φℓ(x) can
be computed in time O(2σℓ). Then we feed it into the circuit Qs(ℓ). First we note that we have

the circuit Qs(ℓ) after the preprocessing stage as s(ℓ) ≤ s(L) ≤ 2σL = T and we have circuits
(Q1, . . . , QT ). The number of arithmetic operations in Zps(ℓ) required to evaluate the circuit is

proportional to the circuit size, and each arithmetic operation takes time log2(ps(ℓ)) = O(s(ℓ)2).

From (1) with t ≤ s(ℓ) ≤ 2σℓ, we have that we can solve an instance of A with ℓ inputs in time

O(2σℓ) + cµ∆2 · s(ℓ)2 · 2σγℓ = O
(

22σℓ+σγℓ
)

= O
(

23σγℓ
)

= O
(
λℓ/2

)
,

where the last equality holds due to the choice of σ = log(λ)/(6γ). The fine-grained reduction from
k-SAT to A implies that a O

(
λn/2

)
-time algorithm for A gives us a O

(
2n(1−δ0)

)
-time algorithm

for k-SAT. Thus, since we solve each ℓ-instance of A resulting from 2(1−α)n instances of k-SAT in
time O

(
λℓ/2

)
, we solve the original n-variate instance F of k-TAUT in time

O
(

2(1−α)n · (2αn)1−δ0
)

= O
(

2n(1−αδ0)
)
. (3)
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The total running time of the preprocessing and solving stages (see (2) and (3)) is bounded
from above by O

(
2n(1−δ0)

)
+ O

(
2n(1−αδ0)

)
= O

(
2n(1−αδ0)

)
, which refutes NSETH, and implies a

super-linear lower bound for Boolean series-parallel circuits.

We now apply Theorem 4.3 to the non-parameterized problems from Section 2.6 to prove
Theorem 1.1.

Theorem 1.1. If at least one of the following problems

k-SAT, MAX-k-SAT, Hamiltonian Path, Graph Coloring, Set Cover, Independent Set,
Clique, Vertex Cover, 3d-Matching

is λn-SETH-hard for a constant λ > 1, then at least one of the following circuit lower bounds holds:

• ENP requires series-parallel Boolean circuits of size ω(n);

• for every constant γ > 1, there exists an explicit family of constant-degree polynomials over Z
that requires arithmetic circuits of size Ω(nγ).

Proof. This follows immediately from Lemma 4.1 and Theorem 4.3.

4.2 Parameterized Problems

In the next theorem we show that if a parameterized problem admits constant-degree polynomial
formulations of complexity 2γk for every γ > 0, then SETH-hardness of this problem would imply
a circuit lower bound. The proof of Theorem 4.4 follows the high level strategy of the proof
of Theorem 4.3, but takes into account the dependence on the parameter k of the parameterized
problem under consideration and (arbitrary) polynomial dependence on the input length, we present
the proof in Appendix A.1.

Theorem 4.4. Let A be a parameterized computational problem with a parameter k. Assume that
for every c > 1, there is ∆ = ∆(c) such that A admits a ∆-polynomial formulation of complexity ck.
If A is λk-SETH-hard for a constant λ > 1, then at least one of the following circuit lower bounds
holds:

• ENP requires series-parallel Boolean circuits of size ω(n);

• for every constant γ > 1, there exists an explicit family of constant-degree polynomials over Z
that requires arithmetic circuits of size Ω(nγ).

We apply Theorem 4.4 to the parameterized problems from Section 2.6 to prove Theorem 1.2.

Theorem 1.2. If at least one of the following parameterized problems

k-Path, k-Vertex Cover, k-Tree, k-Steiner Tree, k-Internal Spanning Tree, k-Leaf Span-
ning Tree, k-Nonblocker, k-Path Contractibility, k-Cluster Editing, k-Set Splitting

is λk-SETH-hard for a constant λ > 1, then at least one of the following circuit lower bounds holds:

• ENP requires series-parallel Boolean circuits of size ω(n);
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• for every constant γ > 1, there exists an explicit family of constant-degree polynomials over Z
that requires arithmetic circuits of size Ω(nγ).

Proof. This follows immediately from Lemma 4.2 and Theorem 4.4.

While Theorem 1.2 conditionally rules out λk lower bounds for certain parameterized problems,
we remark that the same machinery can be applied to conditionally rule out lower bounds of the
form nλk for constant λ > 0. We do not include rigorous proofs of such results in the paper as this
would require us to generalize Theorem 4.4 to work with functions of k that may have different
forms (exponential in k or in k log n) at the expense of clarity of presentation. We note that the
same techniques show that nγk-SETH hardness of k-Clique or k-Independent Set for a constant
γ > 0 would also imply one of the two circuit lower bounds. The polynomial formulations of
parameterized k-Clique and k-Independent Set are identical to the polynomial formulations of the
non-parameterized Independent Set problem presented in Section 6.1 with the only difference that
the sizes of the sets S are now bounded by 2k/θ instead of 2n/θ. This leads to

( n
≤2k/θ

)
= nO(k)

variables in polynomial formulations and rules out nλk lower bounds for the parameterized versions
of k-Clique or k-Independent Set.

5 Deterministic Splitters over Alphabets of Linear Size

Our polynomial formulations of some of the problems (such as k-Path and k-Tree) will require
deterministic constructions of certain splitters. This section is devoted to designing such splitters.

Definition 5.1. An (n, k, ℓ)-splitter H is a family of functions f : [n] → [ℓ] such that for every set
S ⊆ [n] of size |S| = k, there exists a function f ∈ H that splits S evenly:

∀j ∈ [ℓ], ⌊k/ℓ⌋ ≤ f−1(j) ≤ ⌈k/ℓ⌉ .

The set [ℓ] in this definition is called the alphabet. If ℓ ≥ k, an (n, k, ℓ)-splitter H is a family
of functions from [n] to [ℓ] such that for every S ⊆ [n], |S| = k, there exists an f ∈ H which is
injective on S. If ℓ = k, then such a splitter is called a family of perfect-hash functions.

In this section, we present (n, k, ck)-splitters of size Õ(e
k
c
(1+o(1))) that can be computed in

deterministic time 29knO(1).
It is easy to verify that a random set of ≈ e

k
c k log n functions forms an (n, k, ck)-splitter with

high probability. It’s known [Fri84, Alo86] that a good linear code over the alphabet [ℓ] with relative
distance 1−Θ(1/k2) implies a splitter with related parameters. [Fri84, Alo86] use this observation
to deterministically construct splitters of size kO(1) log n for alphabets of size ℓ ≥ k2. Although we
can’t use this splitter directly as we’re working with alphabets of size ℓ = ck ≪ k2, we’ll use this
primitive as one of the building blocks.

[NSS95, Theorem 3(iii)] gives a deterministic (n, k, ck)-splitter of size Õ(ek(1+o(1))). We follow
the high-level approach of [NSS95] with certain low-level modifications to design a splitter of size

Õ(e
k
c
(1+o(1))).

Our final construction of an (n, k, ck)-splitter will be a certain composition of splitters with var-
ious parameters. First, we give three auxiliary constructions of splitters with different parameters
that will later be used in our main construction.
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We say that an (n, k, ℓ)-splitter is explicit if the truth table of every function can be computed
in deterministic time (nℓ)O(1). In particular, all functions of an explicit splitter H can be printed
in time |H|(nℓ)O(1).

5.1 (n, k, k2)-splitters

We present an efficient deterministic way to build (n, k, k2)-splitters from [Fri84, Alo86] that will
later effectively allow us to reduce the domain size from n to k2.

Proposition 5.2 ([Fri84, Alo86]). There is an explicit (n, k, k2)-splitter A(n, k, k2) of size
O(k6 log k log n).

Proof. There exist explicit linear codes [ABN+92] over the alphabet [k2] with at least n codewords,
relative distance δ ≥ 1−2/k2, and length m = O(k6 log k log n). Below we show that viewing such a
code as a set of m functions from [n] to [k2] gives us the desired construction of an (n, k, k2)-splitter.

Assume towards a contradiction that there exists a set T of k codewords such that for each of
the m coordinates, a pair of codewords from T takes the same value at this coordinate. Then the
sum of the

(k
2

)
pairwise distances between the codewords does not exceed

(k
2

)
·m−m. By averaging,

there is a pair of codewords with distance at most

(k
2

)
·m−m
(k
2

) = m

(
1 −

1(k
2

)
)

< m

(
1 −

2

k2

)
,

which contradicts the assumption δ ≥ 1 − 2/k2 on the relative distance of the code.

5.2 (k2, k, log k)-splitters

Now we present explicit splitters of small size for the case of small alphabet ℓ = log k.

Proposition 5.3 ([NSS95, Lemma 4]). There is an explicit (k2, k, log k)-splitter B(k2, k, log k) of
size k2 log k.

Proof. Let ℓ = log k. For each sequence 0 = i0 < i1 < . . . < iℓ = k2, define f : [k2] → [ℓ] by

f(x) = t iff it−1 < x ≤ it .

This construction is explicit and has size
( k2

ℓ−1

)
≤ k2(ℓ−1) ≤ k2 log k. In order to show that this is

a (k2, k, ℓ)-splitter, consider a set S = {j1, . . . , jk} ⊆ [n], where j1 < . . . < jk, and note that the
function f defined by the set

i1 = jk/ℓ, i2 = j2k/ℓ, . . . , iℓ−1 = j(ℓ−1)k/ℓ ,

splits the set S evenly.

5.3 (k2, k/ log k, ck/ log k)-splitters

Now we present a splitter with good parameters which is not explicit. We will later use it with
small values of parameters so even though this splitter is not explicit, it will be possible to compute
it in the allocated time. This primitive is based on the construction from [NSS95, Theorem 2(i)].
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Lemma 5.4. There is an (n, k, ck)-splitter C(n, k, ck) of size Õ(e
k
c
(1+o(1))) that can be constructed

deterministically in time O((kn)3k).

Proof. Let T be a k-wise independent set of vectors of length n over the alphabet [ck]. There are
explicit constructions of such sets of size |T | ≤ nk [AS08].

First we show that there exists t ∈ T which, if viewed as a function h : [n] → [ck], splits at least

an e−k/c fraction of k-sets of any family of k-sets F ⊆
([n]
k

)
. Indeed, a set S ∈ F is split by h if h

is injective on S. The probability that h is injective on a fixed set of size k is

(
1 −

1

ck

)(
1 −

2

ck

)
· · ·

(
1 −

k − 1

ck

)
≥ e−

1
ck

−( 1
ck )

2
− 2

ck
−( 2

ck )
2
−...− k−1

ck
−(k−1

ck )
2

≥ e−k/c .

Now, we iteratively greedily pick a vector from T splitting at least e−k/c-fraction of the remaining
k-sets.

Size of the splitter. The size of the resulting splitter is at most smallest t satisfying

(
n

k

)
(1 − e−k/c)t ≤ 1 .

That is, t ≤ ek/ck log n.

Running time. The running time of each step of the greedy algorithm is at most n ·
(
n
k

)
|T |. And

the total running time is at most

t · n ·

(
n

k

)
· |T | ≤ ek/c · nk · nk · (kn)O(1) ≤ (kn)3k .

5.4 Main Construction

Equipped with the three auxiliary constructions above, we’re in a position to present the main
result of this section.

Theorem 5.5. For every c ≥ 1, there is an (n, k, ck)-splitter of size O(e
k
c
(1+o(1)) log n) that can be

constructed deterministically in time 29knO(1).

Proof. Let A = A(n, k, k2), B = B(k2, k, log k), C = C(k2, k/ log k, ck/ log k) be the splitters from
Propositions 5.2 and 5.3 and Lemma 5.4, respectively. Without loss of generality, we assume that
k is a multiple of log k. We define our (n, k, ck)-splitter H as follows. For every function a ∈ A,
every function b ∈ B, and every log k-tuple of functions (h1, . . . , hlog k) from C, H contains the
function f : [n] → [ck], where

f(x) =
ck

log k
· b(a(x)) + hb(a(x))(a(x)) . (4)
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Correctness. Let S ⊆ [n] be a set of size |S| = k. We will show that there exist functions
a ∈ A, b ∈ B, and (h1, . . . , hlog k) in C log k such that for f defined in (4) and every pair of distinct
s1, s2 ∈ S, f(s1) 6= f(s2). Equivalently, for s ∈ S, if y = b(a(s)) and Sy = {s ∈ S : b(a(s)) = y},
then hy is injective on a(Sy).

Since A and B are splitters, there exist a ∈ A and b ∈ B such that for every y ∈ [log k], |Sy| ≤
k/ log k. Now since C is a splitter and |a(Sy)| ≤ |Sy| ≤ k/ log k, we have that for every y ∈ [log k],
there exists hy ∈ C such that hy is injective on a(Sy). Therefore, the function f defined with the
selected a, b, h1, . . . , hlog k satisfies the requirement that f(s1) 6= f(s2) for all distinct s1, s2 ∈ S.

Size of the splitter. By the definition of H,

|H| = |A|·|B|·|C|log k = O(k6 log k log n)·O(k2 log k)·
(
O
(
e

k
c log k

(1+o(1))
))log k

= O
(
e

k
c
(1+o(1)) log n

)
.

Running time. The splitters from Propositions 5.2 and 5.3 are explicit, and the splitter from

Lemma 5.4 takes time
(
k2 · k

log k

) 3k
log k

= O(29k).

6 Polynomial Formulations

In this section, we prove Lemmas 4.1 and 4.2: we give polynomial formulations of all problems
from Section 2.6.

6.1 Non-parameterized Problems

Lemma 4.1. For every c > 1, there is ∆ = ∆(c), such that each of the following problems

k-SAT, MAX-k-SAT, Hamiltonian Path, Graph Coloring, Set Cover, Independent Set,
Clique, Vertex Cover, 3d-Matching

admits a ∆-polynomial formulation of complexity cn.

Proof. Let A be one of the problems from the list above, and for every n ∈ N, let In be the set
of instances of A of size n. We construct a family of mappings φ = (φ1, φ2, . . . ), where φn : In →
{0, 1}s(n) and a family of polynomials P = (P1, P2, . . . ), following the same five-step pattern.

Idea. We provide a high-level idea of encoding a problem as a polynomial. Start by fix-
ing a parameter θ = θ(c) that will be chosen as a large enough constant. In the
analysis, we write n/θ instead of ⌈n/θ⌉: this affects the bounds negligibly and
at the same time simplifies the bounds. Then, a solution of size n that we are
looking for can be broken into “blocks” of size n/θ; for each potential block, we in-
troduce a 0/1-variable; then, for each candidate solution, we introduce a monomial
that is non-zero if it is indeed a solution.

Variables. We introduce a set X of s(n) variables. They are used to specify the func-
tion φn that maps an instance I ∈ In to a vector in Z

s(n). To do this, we specify
a 0/1-value that φn(I) assigns to every variable x ∈ X.
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Complexity. We bound the number of variables s(n) of the constructed polynomial Ps(n)

as well as the time needed to compute the mapping φn by

(
2n/θ ·

(
n

n/θ

))O(1)

.

In all the cases, it will be straightforward to compute s(n) in the allocated time.

Polynomial. We specify the polynomial Ps(n)(X) as a sum of 2O(n) monomials (where
the hidden constant in O(n) depends on θ = θ(c) only), each having coefficient 1.
It is usually straightforward from the definition of the polynomial that I is a yes-
instance of A iff Ps(n)(φn(I)) > 0.

Degree. We show that the degree ∆ of P depends on θ only.

Below, we show that the five steps above ensure that P is indeed a polynomial formulation of A.

• By choosing a large enough θ = θ(c), we ensure that, for all large enough n,

|X| = s(n) =

(
2n/θ ·

(
n

n/θ

))O(1)

< cn .

• Since Ps(n)(X) is a sum of 2O(n) monomials, computing the coefficients of all monomials

in Ps(n) takes time 2O(n). Since |X| = cn, 2O(n) = |X|O(1). Since the degree of P is ∆, P is
a ∆-explicit family of polynomials.

• Recall that φn maps an instance of the problem to a vector from {0, 1}s(n), and that all the
coefficients of the polynomials Ps(n) are ones. Thus, for every I ∈ In, |Ps(n)(φn(I))| is at most

the number of monomials in Ps(n), i.e., |X|O(1), and hence at most 2|X|. Since φn(I) can
be computed in time cn, we conclude that P is indeed a polynomial formulation of A.

Hamiltonian Path. Given a directed graph G(V,E) with n nodes, check whether it contains
a Hamiltonian path.

Idea. One can break a Hamiltonian path π into θ node-disjoint paths π1, . . . , πθ of length n/θ each.
We say that π1, . . . , πθ is a valid partition iff πi’s are simple paths of length n/θ sharing
no nodes and, for every i, there is an edge joining the last node of πi with the first node
of πi+1.

Variables. Introduce s(n) = O
(
n2
(

n
n/θ

))
variables:

X = {xS,u,v : S ⊆ V, |S| = n/θ, u ∈ S, v ∈ V \ S} .

The mapping φn(G) assigns the following 0/1-value to a variable xS,u,v:

[there is a Hamiltonian path in G[S] that starts at u and ends at a node adjacent to v]

(here and below, [·] is the Iverson bracket: for a predicate Y , [Y ] = 1 if Y is true and [Y ] = 0
otherwise).
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Complexity. The mapping φn(G) can be computed in time O∗(
( n
n/θ

)
2n/θ) because Hamiltonian Path

on a graph with n nodes can be solved in time O∗(2n).

Polynomial. For every partition V = S1⊔· · ·⊔Sθ into disjoint subsets of size n/θ and every θ nodes
v1, . . . , vθ+1, add to Ps(n) a monomial

xS1,v1,v2 · xS2,v2,v3 · · · xSθ,vθ ,vθ+1
.

The number of monomials added to Ps(n) is at most θnnθ = 2O(n).

Degree. The degree of P is θ.

3d-Matching. Given a 3-uniform 3-partite hypergraph G(V1 ⊔ V2 ⊔ V3, E) with parts of size n
(that is, |V1| = |V2| = |V3| = n and E ⊆ V1 × V2 × V3) and an integer t, check whether G contains
a matching of size at least t.

Idea. One can break a matching M of size t into θ matchings M1, . . . ,Mθ of size at most n/θ.
Then, M1, . . . ,Mθ is a valid partition iff Mi’s are node-disjoint matchings.

Variables. Introduce s(n) =
(

n
≤n/θ

)3
= O∗

((
n

n/θ

)3)
variables:

X = {xA,B,C : A ⊆ V1, B ⊆ V2, C ⊆ V3, |A| = |B| = |C| ≤ n/θ} .

The function φn(G) assigns the following value to xA,B,C :

[the induced subgraph G[A ⊔B ⊔ C] contains a perfect matching] .

Complexity. This can be computed in time O∗
(

8n/θ
( n
n/θ

)3)
since 3d-Matching is solvable in time

O∗(8n) in 3-partite graphs with parts of size n.4

Polynomial. The polynomial Ps(n) is defined as follows. For every A1, . . . , Aθ ⊆ V1, B1, . . . , Bθ ⊆
V2, C1, . . . , Cθ ⊆ V3, such that all Ai’s, Bi’s, and Ci’s are pairwise disjoint, have size at most
n/θ, and that ∣∣∣∣∣∣

⋃

i∈[θ]

Ai

∣∣∣∣∣∣
= t ,

add to Ps(n) a monomial ∏

j∈[θ]

xAj ,Bj ,Cj
.

The number of monomials added to Ps(n) is at most
( n
n/θ

)3θ
= 2O(n).

Degree. The degree of P is θ.

4This is done by a straightforward dynamic programming algorithm: for A ⊆ V1, B ⊆ V2, C ⊆ V3, let M(A,B,C)
be the maximum size of a matching in G[A ∪B ∪ C]; then, M(A,B,C) = max{a,b,c}∈E M(A \ a,B \ b, C \ c) + 1.
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Independent Set. Given a graph G(V,E) with n nodes and an integer t, check whether G con-
tains an independent set of size at least t.

Idea. An independent set I of size t can be partitioned into θ sets I1, . . . , Iθ of size at most n/θ.
Then, I1, . . . , Iθ is a valid partition iff their total size is at least t and for all i 6= j, Ii ∪ Ij is
an independent set.

Variables. Introduce s(n) =
( n
≤2n/θ

)
= O∗(

( n
2n/θ

)
) variables:

X = {xS : S ⊆ V and |S| ≤ 2n/θ} .

The mapping φn(G) assigns to xS the value

[S is an independent set of G] .

Complexity. The mapping φn(G) can be computed in time O∗(22n/θ
(

n
2n/θ

)
), since Independent Set

can be solved in time O∗(2n).

Polynomial. For every S1, . . . , Sθ ∈
(

V
≤n/θ

)
such that Si ∩ Sj = ∅, for all i 6= j, and | ∪i∈[θ] Si| = t,

add to Ps(n) a monomial ∏

1≤i<j≤θ

xSi∪Sj
.

The number of monomials added to P is at most θn = 2O(n).

Degree. The degree of P is O(θ2).

Vertex Cover and Clique. These two problems are close relatives of Independent Set: the
complement of an independent set in a graph is a vertex cover of this graph; a clique in a graph is
an independent set in the complement of the graph. Thus, for Vertex Cover and Clique one can
use the polynomial formulation of Independent Set.

MAX-k-SAT. Given a k-CNF formula F = C1∧· · ·∧Cm over n variables and an integer t, check
whether it is possible to satisfy at least t clauses of F .

Idea. An assignment µ ∈ {0, 1}n satisfying at least t clauses can be partitioned into θ subassign-
ments µ1, . . . , µθ ∈ {0, 1}n/θ . Then, for each clause C, one can assign at most k subassign-
ments that are “responsible” for C: these are the subassignments that contain the k variables
from C. Then, µ1, . . . , µθ is a valid partition if the total number of clauses satisfied by their
k-tuples of subassignments is at least t.

Variables. Partition the set of variables of F into θ blocks V1, . . . , Vθ of size n/θ. For each clause C,
assign k blocks such that all variables of C belong to these blocks: formally, let b(C) ⊆ [θ],
|b(C)| = k, and the set of variables of Ci is a subset of ∪i∈b(C)Vi.

Introduce s(n) =
(n/θ

k

)
2nk/θt variables:

X = {xB,τ,r : B ⊆ [θ], |B| = k, τ ∈ {0, 1}nk/θ , 0 ≤ r ≤ t} .
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For B ⊆ [θ], |B| = k, by c(B) define the set of clauses C of F such that b(C) = B. The
mapping φn(F ) assigns the following value to xB,τ,r:

[τ satisfies at least r clauses from c(B)] .

Polynomial. Let F be a class of functions f : 2[θ] → Z≥0 such that
∑

B⊆[θ],|B|=k f(B) = t. For
µ ∈ {0, 1}n and B ⊆ [θ], let µB be a projection on coordinates ∪i∈BVi. For every f ∈ F and
µ ∈ {0, 1}n, add to Ps(n) a monomial

∏

B⊆[θ],|B|=k

xB,µB ,f(B) .

Clearly, |F| ≤ t2
θ
≤ nO(k2θ) and |{B : B ⊆ [θ], |B| = k}| ≤ 2θ. Hence, the number of mono-

mials added to P is at most O∗(2n) = 2O(n).

Degree. The degree of P is
(
θ
k

)
≤ 2θ.

k-SAT. k-SAT is a special case of MAX-k-SAT.

Graph Coloring. Given a graph G(V,E) with n nodes and an integer t, check whether G can
be colored properly using at most t colors.

Idea. Partition V into θ blocks V1, . . . , Vθ of size n/θ. We would like to construct a t-coloring of V
from colorings of the blocks. However, a t-coloring may contain a color whose color class
is large (much larger than n/θ). For this reason, the polynomial formulation below is a bit
trickier than the previous ones: we have to treat color classes differently depending on their
size.

Variables. Introduce s(n) = O(n2
(

n
2n/θ

)
) variables:

X = {xS,r : S ⊆ V, |S| ≤ 2n/θ, 0 ≤ r ≤ t} .

The mapping φn(G) assigns to xS,r the value

[χ(G[S]) ≤ r] .

As the chromatic number of a n-node graph can be found in time O∗(2n) [BHK09], the
mapping φn(G) can be computed in time

O∗

(
22n/θ

(
n

2n/θ

))
.

Polynomial. The polynomial Ps(n) is defined as follows:

Ps(n)(X) =
∑

V=S1⊔···⊔Sθ

|Si|≤2n/θ for i∈[θ]

∑

t1+···+tp=t
ti≥0 for i∈[θ]

∏

i∈[p]

xSi,ti .
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We claim that Ps(n)(φn(X)) > 0 iff G can be properly colored using t colors such that every
color induces an independent set of size at most n/θ. Indeed, if there is such a coloring,
one can greedily pack color classes into groups of size at most 2n/θ and obtain the required
partition V = S1 ⊔ · · · ⊔ Sθ.

Thus, it remains to consider the case when there exists a t-coloring where at least one of the
color classes has size more than n/θ. Since each color class induces an independent set in
the graph, we are going to reuse the ideas from polynomial formulation of Independent Set.
Namely, assume that T1, . . . , Tl are all large color classes in a t-coloring: for every i ∈ [l],
Ti ⊆ V is an independent set of size more than n/θ.

Introduce the following additional variables:

Y = {yS : S ⊆ V, |S| ≤ 2n/θ} .

The mapping φn(G) assigns the following values to yS :

[S is an independent set in G] .

For every L ⊆ V of size l > n/θ, fix its partition (say, the lexicographically first one)
L1⊔· · ·⊔L⌈lθ/n⌉ into subsets of size n/θ: all sets are disjoint and all of them have size n/θ except
for possibly the last one. The following monomial expresses the fact that L is an independent
set in G:

M(L) =
∏

1≤i<j≤⌈lθ/n⌉

yLi∪Lj
.

The final polynomial looks as follows:

Qs(n)(X,Y ) =

θ∑

l=0

∑

T1,...,Tl⊆V
Ti∩Tj=∅ for all i 6=j
|Ti|>n/θ for all i

∑

S1⊔···⊔Sθ=V \∪i∈[l]Ti

|Si|≤2n/θ for all i∈[p]
t1+···+tp=t−l

∏

i∈[l]

M(Ti)
∏

i∈[θ]

xSi,ti .

The number of monomials added to Q is at most O∗(nθθn) = 2O(n).

Degree. The degree of Qs(n) is at most 2θ2 + θ.

Set Cover. Given a set family F = {F1, . . . , Fm} ⊆ 2[n], m = nO(1) and an integer t, check
whether one can cover [n] with at most t sets from F .

Idea. Partition the universe [n] into θ blocks of size n/θ. Each of these blocks is either covered by
at most t sets or is covered by a single large set (of size at least n/θ) that also possibly
intersects other blocks.

Variables. Introduce s(n) = O(nO(1)
(

n
2n/θ

)
) variables:

X = {xS,r : S ⊆ [n], |S| ≤ 2n/θ, 0 ≤ r ≤ t} ,

Y = {yS,i : S ⊆ [n], |S| ≤ 2n/θ, 1 ≤ i ≤ m} .
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The mapping φs(n)(F) assigns the following values to xS,r and yS,i:

[S can be covered by r sets from F ] ,

[S ⊆ Fi] ,

Complexity. As Set Cover problem can be solved in time O∗(2n) [BHK09], the mapping φs(n)(F)
can be computed in time

O∗

(
2

2n
θ

(
n
2n
θ

))
.

Polynomial. For every L ⊆ V of size l > n/θ, fix its partition (say, the lexicographically first one)
L1 ⊔ . . . ⊔ L⌈θl/n⌉ into subsets of size n/θ: all sets are disjoint and all of them have size n/θ
except for possibly the last one. The following monomial expresses the fact that L ⊆ Fq:

M(L, q) =

⌈θl/n⌉∏

i=1

yLi,q .

Finally, the polynomial Qs(n)(X,Y ) is defined as follows:

θ∑

l=0

∑

q1,...,ql∈[m]
∀i 6=j:qi 6=qj

∑

T1,...,Tl⊆V
Ti∩Tj=∅ for all i 6=j
|Ti|>n/θ for all i

∑

S1⊔···⊔Sθ=V \∪i∈[l]Ti

t1+···+tp=t−l

∏

i∈[l]

M(Ti, qi)
∏

i∈[θ]

xSi,ti .

Degree. The degree of this polynomial is at most (θ+1)θ. The number of monomials added to Qs(n)

is at most O∗(nO(θ)θn) = 2O(n).

6.2 Parameterized Problems

6.2.1 Technical Lemmas

For parameterized polynomial formulations, we utilize the following technical lemma. We provide
its proof in Appendix A.2.

Lemma 6.1. Let T (V,E) be a tree, M ⊆ V be a set of k nodes, and θ > 1 be an integer. Then
E can be partitioned into m ≤ θ blocks E = E1 ⊔ · · · ⊔ Em such that, for each i ∈ [m], Ei induces
a subtree Ti of T with at most 2k

θ−1 + 2 nodes from M .

The following definition resembles a block structure of a graph: for a family of sets X1, . . . ,Xm

we introduce m nodes and connect the i-th of these nodes with all elements of Xi that belong to at
least one other Xj .

Definition 6.2. Given m sets X1, . . . ,Xm, we introduce a set S = {s1, . . . , sm} such that S does
not intersect any Xi, and a set C =

⋃
i 6=j

(Xi ∩ Xj). By a subset graph B(X1, . . . ,Xm) we denote

the following graph G(V,E): V = S ⊔ C, E = {{si, c} : c ∈ Xi ∩ C}. Each v ∈ S is called a set
node, and each v ∈ C is called a connector node.
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Remark 6.3. Let T1, . . . , Tm be the trees resulting from applying Lemma 6.1 to a tree T . Then,
B = B(V (T1), . . . , V (Tm)) is a tree containing m set nodes and at most m− 1 connector nodes.

6.2.2 Polynomial Formulations

Lemma 4.2. For every c > 1, there is ∆ = ∆(c), such that each of the following parameterized
problems

k-Path, k-Vertex Cover, k-Tree, k-Steiner Tree, k-Internal Spanning Tree, k-Leaf Span-
ning Tree, k-Nonblocker, k-Path Contractibility, k-Cluster Editing, k-Set Splitting

admits a ∆-polynomial formulation of complexity ck.

Proof. We will design polynomial formulations Ps(x,k) for the above problems where s(x, k) = s(n, k)
will be a function of n = |x| and k. Naturally, we would like to have different polynomials P for
different values of (n, k), alas, s is not necessarily injective. One way to overcome this issue is
to consider a two-dimensional sequence of polynomials Ps(n,k),k as we’ll always have that s(·, k) is
injective for every k. But this approach would cause technical issues in the proof of arithmetic
lower bounds in Theorem 4.4. Instead, we still consider a sequence (P1, P2, . . .) of polynomials, but
slightly modify the function s. Given a function s(n, k), we define the following Cantor pairing
function [HU79] of s(n, k) and k:

s′(n, k) = (s(n, k) + k)(s(n, k) + k + 1)/2 + k .

We note that s′(·, ·) is injective because s(·, k) is injective for every k. In all polynomial formulations
below, we can always switch from s(x, k) to s′(x, k) to resolve the aforementioned issue. Indeed,
since s′(x, k) ≥ s(x, k), we can just add s′(x, k)− s(x, k) dummy variables to the polynomial. Also,
since s′(x, k) ≤ (s(x, k) + k)2, it suffices to replace the bound s(x, k) ≤ T (k)|x|∆ by the bound
s′(x, k) ≤ (s(x, k) + k)2 ≤ T ′(k)|x|∆

′
for T ′(x) = T (k)2 · k2 and ∆′ = ∆. Since we’re proving

polynomial formulations for all T = ck, c > 1, the change in T ′ doesn’t affect the statement of the
lemma.

In all polynomial formulations below we follow the same five-step pattern as in Lemma 4.1 with
the following three differences.

Kernel. For most of the considered problems, we start by applying a kernel. Recall that a kernel re-
places, in polynomial time, an instance (x, k) of a parameterized problem A with an equivalent
instance (x′, k′) of A such that |x′|, k′ ≤ g(k), for some computable function g. To simplify
the presentation of polynomial formulations, we identify (x, k) with (x′, k′). This allows us
to assume from the beginning that n = |x| ≤ g(k).

Variables. The value of s(x, k) will be a constant degree of a product of 2O(k/θ) and
( O(k)
O(k/θ)

)
as well as

nO(1). By choosing a large enough θ = θ(c), we ensure that s(x, k) ≤ cknO(1).

Polynomial. We ensure that the polynomial Ps(x,k) is a sum of at most nO(1)2O(k) monomials.

k-Vertex Cover. Given a graph G(V,E), check whether G contains a vertex cover of size
at most k.

Kernel. As there exists a kernel of size 2k for k-Vertex Cover [CKJ01], we assume that |V | = n ≤ 2k.
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Idea. Partition V into θ blocks of size n/θ: V = V1⊔· · ·⊔Vθ. This induces a partition of any S ⊆ V
into θ blocks of size at most n/θ: S = S1 ⊔ · · · ⊔ Sθ where Si = S ∩ Vi. Then, S is a vertex
cover of G iff, for all 1 ≤ i < j ≤ θ, Si ⊔ Sj is a vertex cover of G[Vi ⊔ Vj ].

Variables. Introduce s(G, k) = O(n2
( n
≤n/θ

)2
) = O∗(

( 2k
2k/θ

)
) variables:

X = {xi,j,A,B : i, j ∈ [θ], A ⊆ Vi, B ⊆ Vj} .

The mapping φ(G, k) assigns the following value to a variable xi,j,A,B:

[A ⊔B is a vertex cover of G[Vi ⊔ Vj]] .

Complexity. The mapping φ(G, k) can be computed in time O∗(
( 2k
2k/θ

)
).

Polynomial. For every S ⊆ V of size at most k, add the following monomial to Ps(G,k):

∏

1≤i<j≤θ

xi,j,Si,Sj
.

The number of monomials added to Ps(G,k) is
( n
≤k

)
= O∗(

(2k
k

)
).

Degree. The degree of P is at most θ2.

k-Steiner Tree. Given a graph G(V,E) with (integer non-negative) edge weights and a subset
S ⊆ V of its nodes of size k (called terminals), and an integer 0 ≤ t ≤ |V |O(1), check whether there
is a tree in G of weight at most t containing all nodes from S.

Idea. Assume that S = {1, . . . , k}: relabel nodes if needed. Consider a Steiner tree T that we are
looking for. Using Lemma 6.1 for T and M = S one can find subtrees T1, . . . , Tm of T for
some m ≤ θ such that each Ti contains at most 2k

θ−1 + 2 ≤ 3k/θ terminals. Let V1, . . . , Vm be
the corresponding sets of nodes, that is, Vi = V (Ti), let Si = S∩Vi for every 1 ≤ i ≤ m, let ℓi
be the weight of Ti, and let B = B(V1, . . . , Vm). By Remark 6.3, B is a tree and it contains
m subset nodes and at most m− 1 connector nodes. Observe that B can also be obtained as
B(A1, . . . , Am), where Ai = Vi ∩

⋃
j 6=i

Vj . It is significant since each |Ai| is bounded by θ − 1

in contrast to |Vi| which is bounded by n. Note also that
∑

ℓi ≤ L and for every i, a subtree
Ti has weight ℓi and connects nodes from Si ∪Ai.

To construct the polynomial, we go over all possible ℓi, {Si} and {Ai} such that
∑

ℓi ≤ L,⋃
Si = S and B(A1, . . . , Am) is connected, and check whether for every i we can connect

nodes from Si ∪ Ai with a tree of weight at most ℓi. Observe that those trees can intersect
and their union can give us a connected subgraph that is not a tree, but we still can obtain
a proper Steiner tree just by taking a spanning tree of that subgraph.

Variables. Introduce s(G, k) = O(
(

k
≤3k/θ+θ

)
· nθ · nO(1)) + nO(1) = O∗(

(
k

4k/θ

)
) variables:

X = {xS′,A,ℓ : S′ ⊆ S, |S′| ≤ 3k/θ,A ⊆ V, |A| ≤ θ − 1, ℓ ≤ nO(1)};

Y = {yL′ : L′ ≤ nO(1)} .
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The mapping φ(G, k) assigns the following values to variables:

xS′,A,ℓ 7→ [there exists a Steiner tree in G for the set of terminals S′ ∪A

of the weight at most ℓ];

yL′ 7→ [L′ ≤ L] .

Complexity. The mapping φ(G, k) can be computed in time O∗(
( k
4k/θ

)
· 24k/θ), since k-Steiner tree

can be solved in time O∗((2 + δ)k) for any δ > 0 [FKM+07].

Polynomial. The polynomial looks as follows:

Ps(G,k)(X,Y ) =
∑

m≤θ,
ℓ1,...,ℓm,∑
ℓi≤nO(1)

∑

S1∪···∪Sm=S,
|Si|≤3k/θ

∑

A1,...,Am⊆V,
|
⋃

Ai|≤θ−1,
B(A1,...,Am)
is connected

y∑ ℓi

m∏

i=1

xSi,Ai,ℓi .

The number of monomials in Ps(G,k) is at most θ · nO(1) ·
(

k
≤3k/θ

)θ
·
(
n
θ

)θ
= 2O(k)nO(1).

Degree. The degree of P is θ + 1.

k-Internal Spanning Tree. Given a graph G, check whether there is a spanning tree of G with
at least k internal nodes.

Kernel. As there exists a kernel for k-Internal Spanning Tree of size 3k [FGST13] we assume that
|V | = n ≤ 3k.

Idea. Let T be a tree we are looking for. Using Lemma 6.1 for T and M = V (T ), we obtain m ≤ θ
subtrees Ti of size at most 2n

θ−1 + 2 ≤ 3n/θ. For each i ∈ [m], let Si = V (Ti) and ki be the
number of internal nodes of T that belong to Si. By Remark 6.3, B = B(S1, . . . , Sm) is a tree.
Let S be the set of set nodes and C be the set of connector nodes of B. When summing up
all ki, we count each internal node v of T that belongs to C exactly degB(v) times. Then,
we count

∑
v∈C

degB(v)−|C| = (|S|+ |C|−1)−|C| = m−1 extra nodes, so
∑

ki ≥ k+(m−1).

To construct the polynomial, we go over all possible S1, . . . , Sm ⊆ V such that
⋃

Si = V and
B(S1, . . . , Sm) is a tree and over all possible k1, . . . , km such that

∑
ki ≥ k + (m − 1). For

fixed {Si} and {ki}, it suffices to check that for every i there exists a spanning tree of G[Si]
with at least ki internal nodes, where we also should consider Si ∩

⋃
j 6=i

Sj as internal nodes (to

do that, we add a leaf to each node from Si ∩
⋃
j 6=i

Sj).

Variables. Introduce s(G, k) =
( n
≤3n/θ

)
·
( n
≤θ

)
· 3n/θ = O∗(

( 3k
9k/θ

)
) variables:

X = {xS,A,k′ : A ⊆ S ⊆ V, |S| ≤ 3n/θ, |A| ≤ θ − 1, k′ ≤ |S|} .

Let GS,A be a graph obtained from G[S] by adding a leaf to each node v ∈ A.

The mapping φ(G, k) assigns the following value to a variable xS,A,k′:

[there exists a spanning tree of GS,A that contains at least k′ internal nodes] .
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Complexity. The mapping φ(G, k) can be computed in time O∗(
( 3k
9k/θ

)
· 83n/θ) = O∗(

( 3k
9k/θ

)
· 89k/θ),

since k-Internal Spanning Tree can be solved in time O∗(8k) [FGST13].

Polynomial. The polynomial looks as follows:

Ps(G,k)(X) =
∑

m∈[θ]

∑

S1,...,Sm⊆V,
1<|Si|≤3n/θ,⋃

Si=V,
B(S1,...,Sm) is a tree

∑

k1,...,km,
ki≤|Si|,∑

ki≥k+(m−1)

m∏

i=1

xSi,
⋃
j 6=i

(Si∩Sj),ki

The number of monomials in Ps(G,k) is at most θ ·
( n
3n/θ

)θ
· (3n/θ)θ =

( 3k
9k/θ

)θ
kO(1) = 2O(k).

Degree. The degree of P is θ.

k-Leaf Spanning Tree. Given a graph G, check whether there is a spanning tree of G with
at least k leaves.

Kernel. As there exists a kernel for k-Leaf Spanning Tree of size 5.75k [FMRU00], we assume that
|V | = n ≤ 5.75k ≤ 6k.

Idea. Similarly to the polynomial formulation of k-Internal Spanning Tree, we go over all possible
S1, . . . , Sm ⊆ V such that

⋃
Si = V and B(S1, . . . , Sm) is a tree, and go over all possible

k1, . . . , km such that
∑

ki ≥ k. For fixed {Si} and {ki}, it suffices to check that for every i
there exists a spanning tree of G[Si] with at least ki leaves, where we should consider Si∩

⋃
j 6=i

Sj

as internal nodes (to do that, we add a leaf to each node from Si ∩
⋃
j 6=i

Sj).

Variables. Introduce s(G, k) = O(
( n
≤3n/θ

)
· nθ · 3n/θ) = O∗(

( 6k
18k/θ

)
) variables:

X = {xS,A,k′ : A ⊆ S ⊆ V, |S| ≤ 3n/θ, |A| ≤ θ − 1, k′ ≤ |S|} .

The mapping φ(G, k) assigns the following value to a variable xS,A,k′:

[there exists a spanning tree of GS,A that contains at least k′ + |A| leaves] .

We add |A| as we obtain a graph with |A| dummy leaves that appear in any spanning tree.

Complexity. The mapping φ(G, k) can be computed in time O∗(
( 6k
18k/θ

)
·43n/θ+θ) = O∗(

( 6k
18/θ

)
·420k/θ),

since k-Leaf Spanning Tree can be solved in time O∗(4k) [KLR08].

Polynomial. The polynomial looks as follows:

Ps(G,k)(X) =
∑

m≤θ

∑

S1,...,Sm⊆V,
1<|Si|≤3n/θ,⋃

Si=V,
B(S1,...,Sm) is a tree

∑

k1,...,km,
ki≤|Si|,∑

ki≥k,

m∏

i=1

xSi,
⋃
j 6=i

(Si∩Sj),ki

The number of monomials added to Ps(G,k) is O(θ ·
( n
≤3n/θ

)θ
·(3n/θ)θ) =

( 6k
18k/θ

)θ
kO(1) = 2O(k).

Degree. The degree of P is θ.
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k-Nonblocker. Given a graph G(V,E), check whether G contains a subset of nodes of size
at least k whose complement is a dominating set in G.

Kernel. As there exists a kernel of size 5k
3 for k-Nonblocker [DFF+06], we assume that |V | = n ≤ 5k

3 .

Idea. Let N ⊆ V be a nonblocker for G with at least k nodes, and let D = V \N be a dominating
set for G. Let D1 ⊔ · · · ⊔ Dθ be a partition of D into θ blocks of size at most n/θ. Let
N1 ⊔ · · · ⊔ N θ be a partition of N such that each node from N i is adjacent to some node
from Di, and, for each i ∈ [θ], let N i

1 ⊔ · · · ⊔ N i
θ be a partition of N i into θ blocks of size

at most n/θ. This way, we get a partition
⊔

N i
j ⊔
⊔
Di of V into θ2 + θ blocks of size at most

n/θ ≤ 5k
3θ .

To construct the polynomial Ps(G,k), we go through all such partitions, and for each partition
we check that for every i each node from

⊔
j
N i

j is adjacent to a node from Di.

Variables. Introduce s(G, k) = O(
( n
≤n/θ

)2
) = O∗(

( 5k/3
5k/3θ

)2
) variables:

X = {xN,D : N,D ⊆ V, |N |, |D| ≤ n/θ} .

The mapping φ(G, k) assigns the following value to a variable xN,D:

[∀v ∈ N ∃u ∈ D : {v, u} ∈ E] = [every node in N is dominated by a node in D] .

Complexity. The mapping φ(G, k) can be computed in time O∗(
( 5k/3
5k/3θ

)2
).

Polynomial. For every N ⊆ V of size at least k and a partition
⊔
N i

j ⊔
⊔
Di of V into θ2 + θ blocks

of size at most n/θ such that
⊔
i,j

N i
j = N , we add the following monomial to Ps(G,k):

∏

i,j≤θ

xN i
j ,D

i .

The number of monomials added to Ps(G,k) is O((θ2 + θ)n) = 2O(k).

Degree. The degree of P is θ2.

k-Path Contractibility. Given a graph G, check whether it is possible to contract at most
k edges in G to turn it into a path.

Kernel. As there exists a kernel of size 5k + 3 for k-Path Contractibility [HVHL+14], we assume
that |V | = n ≤ 5k + 3 ≤ 6k.

Idea. Consider the path resulting from edge contraction. Each node of the path corresponds to a
connected set of G that contracts to that node. Let S be a family of those sets of size at
least n/θ, and let T be a family of those sets of size less than n/θ. We apply the following
procedure to T . While T contains two sets T1 and T2 of size less than n/(2θ) and T1 ⊔ T2 is
a connected set in G, we replace T1 and T2 in T by T1 ⊔ T2.
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Let s := |S| and t := |T |. Let V = S ⊔ T , and let V = {V1, . . . , Vm} where Vi are numbered
according to their order in the path. This way, we get a partition V1 ⊔ · · · ⊔ Vm of V into
m = s + t blocks. In order to obtain an upper bound for m, we consider a partition T =
Tℓ ⊔ Ts, where Tℓ contains sets of size at least n/(2θ) and Ts contains sets of size less than
n/(2θ). Observe that s ≤ n/(n/θ) = θ, |Tℓ| ≤ n/(n/(2θ)) = 2θ, and that after applying the
above procedure to T , for every Vi ∈ Ts, Vi−1 and Vi+1 (if they exist) belong to S ⊔ Tℓ, so
|Ts| ≤ |S| + |Tℓ| + 1 ≤ θ + 2θ + 1 ≤ 4θ. Hence, t = |Tℓ| + |Ts| ≤ 6θ, and m = s + t ≤ 7θ.

Let S = {S1, . . . , Ss} and T = {T1, . . . , Tt}. Sets from S can be too large, so we cover each of
them with subsets of size at most 3n/θ. For every i ∈ [s] we apply Lemma 6.1 to a spanning
tree of G[Si] and obtain its subtrees on node sets S1

i , . . . , S
ℓ
i , where ℓ ≤ θ, ∀j |Sj

i | ≤ 3n/θ,⋃
j
Sj
i = Si, and B(S1

i , . . . , S
ℓ
i ) is connected.

Let k1, . . . , km be the numbers of contracted edges in V1, . . . , Vm, respectively. Let us partition
{ki} into {ksi } and {kti}, where ksi and ktj are numbers of contracted edges in Si and Tj ,
respectively. Observe that ∀i ∈ [s], ksi = |Si| − 1. That means that

∑
ki ≤ k ⇔

∑
kti +∑

(|Si| − 1) ≤ k.

Let A1, . . . , Am and B1, . . . , Bm be such sets of nodes that ∀i ∈ [m− 1] Bi consists of nodes
from Vi that are adjacent to a node from Vi+1, and Ai+1 consists of nodes from Vi+1 that are
adjacent to a node from Vi. Let us partition {Ai} into {As

i} and {At
i} such that ∀i ∈ [s] As

i ⊆
Si and ∀i ∈ [t] At

i ⊆ Ti. Similarly, we partition {Bi} into {Bs
i } and {Bt

i}.

Consider a1, . . . , am and b1, . . . , bm such that ∀i ∈ [m] ai ∈ Ai, bi ∈ Bi and ∀i ∈ [m− 1] there
is an edge between bi and ai+1.

A1 B1

b1

T1

V1

A2 B2

a2 b2

T2

V2

a3 b3

A3 B3

T3

V3

A4 B4

S1

S1
1

S2
1 S3

1

V4

a4 b4
A4 B4

S2

S1
2

S2
2 S3

2

S4
2

V5

a5

To construct the polynomial, we go through all possible {Vi} and {ki}, and check that every
Vi is a connected set, for every i < j there is an edge between Vi and Vj iff i + 1 = j, and for
every Vi of size less than n/θ, the graph G[Vi] can be contracted to a path p1, . . . , ph where
only nodes corresponding to p1 can be adjacent to Vi−1 and only nodes corresponding to ph
can be adjacent to Vi+1. To do that we also go through all possible {Ai} and {Bi} where
Ai, Bi ⊆ Vi, {ai} and {bi} where ai ∈ Ai, bi ∈ Bi, and {Sj

i }, and consider {Ti}, {At
i} and

{Bt
i} consistent with {Vi}, {Ai} and {Bi}.

Variables. Introduce s(G, k) = O(
( n
≤3n/θ

)
+
( n
≤n/θ

)3
k +

( n
≤3n/θ

)4
+ n2) = O∗(

( 6k
18k/θ

)4
) variables:

X = {xS : S ⊆ V, |S| ≤ 3n/θ} ;
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Y = {yA,B
T,t : A,B ⊆ T ⊆ V, |T | ≤ n/θ, t ≤ k} ;

Z = {zB,A
V1,V2

: V1, V2 ⊆ V,B ⊆ V1, A ⊆ V2, |V1|, |V2| ≤ 3n/θ} ;

W = {wb,a : b, a ∈ [n]} .

The mapping φ(G, k) assigns the following values to the variables:

xS 7→ [G[S] is connected] ;

yA,B
T,t 7→ [it is possible to contract at most t edges of G[T ]

to obtain a path such that A and B contract to

the first and the last nodes in the path, respectively] ;

zB,A
V1,V2

7→ [the set of endpoints of edges between V1 and V2 is a subset of B ∪A] ;

wb,a 7→ [b and a are adjacent in G] .

Complexity. Each variable xS , zB,A
V1,V2

and wb,a can be computed in polynomial time.

Lemma 6.4. yA,B
T,t can be computed in O∗(2|T |) time.

Proof. Let p1, . . . , ph be a path obtained from G[T ] by contracting edges. Let T 1 ⊔ · · · ⊔ T h

be a partition of T into sets where T i contracts to pi. Let τ : T → {0, 1} be a 2-coloring
function that colors v ∈ T i to [i mod 2]. We observe that given T and τ , we can obtain the
partition T 1 ⊔ · · · ⊔ T h by finding connected components of each color.

To compute yA,B
T,t , we go through all 2|T | 2-colorings and check that if we contract the corre-

sponding {T i} we obtain a path,
∑

(|T i| − 1) ≤ t, A ⊆ T 1 and B ⊆ T h.

The mapping φ(G, k) can be computed in time O∗(
(

6k
18k/θ

)4
· 26k/θ).

Polynomial. Before we present the polynomial, we introduce the following monomials.

• C
{Sj

i }
(X) checks that all sets Sj

i are connected. Using it for proper {Sj
i }, we check that

every Si is connected.

C
{Sj

i }
(X) =

∏

i,j

x
Sj
i

• P
{At

i},{B
t
i}

{Ti},{kti}
(Y ) checks that, for every i, there is a way to contract at most kti edges of

G[Ti] to obtain a path such that At
i and Bt

i contract to the first and the last nodes of
that path, respectively.

P
{At

i},{B
t
i}

{Ti},{kti}
(Y ) =

∏

i

y
At

i,B
t
i

Ti,kti

• N
{Sj

i },{Ti}

{Vi}
(Z) checks that ∀a, b such that |a − b| > 1, there is no edge between Va and

Vb.

N
{Sj

i },{Ti}

{Vi}
(Z) =

∏

a,b,
a+1<b

∏

M1,M2∈{Ti}∪{S
j
i },

M1⊆Va,M2⊆Vb

z∅,∅
M1,M2

36



• A
{Sj

i },{Ti}

{Vi},{Ai},{Bi}
(Z) checks that for every i ∈ [m− 1] the set of endpoints of edges between

Vi and Vi+1 is a subset of Bi ∪ Ai+1. Using it with the previous monomial, we check
that ∀i ∈ [t], regardless of how we contract G[Ti] to a path, there is no edge connecting
an internal node of that path to a node outside Ti.

A
{Sj

i },{Ti}

{Vi},{Ai},{Bi}
(Z) =

∏

i

∏

M1,M2∈{Ti}∪{S
j
i },

M1⊆Vi,M2⊆Vi+1

z
M1∩Bi,M2∩Ai+1

M1,M2

• P{ai},{bi}(W ) checks that ∀i ∈ [m− 1], there is an edge (bi, ai+1) between Vi and Vi+1.

P{ai},{bi}(W ) =
∏

i

wbi,ai+1

Now, we can present the final polynomial Ps(G,k)(X,Y,Z,W ): for every partition V1⊔· · ·⊔Vm

of V into m ≤ 7θ blocks, {Ai}, {Bi} such that ∀i ∈ [m] Ai, Bi ⊆ Vi, {ai} and {bi} such that
∀i ∈ [m] ai ∈ Ai, bi ∈ Bi, the corresponding {Si}, {Ti}, {At

i} and {Bt
i}, {kti} such that∑

kti +
∑

(|Si| − 1) ≤ k and a family {Sj
i } of ℓ ≤ θ sets of size at most 3n/θ such that⋃

j
Sj
i = Si and B(S1

i , . . . , S
ℓ
i ) is connected, we add the following monomial:

C
{Sj

i
}
(X) · P

{At
i},{B

t
i}

{Ti},{kti}
(Y ) ·N

{Sj
i },{Ti}

{Vi}
(Z) · A

{Sj
i },{Ti}

{Vi},{Ai},{Bi}
(Z) · P{ai},{bi}(W ) .

The number of monomials added to Ps(G,k) is O((5θ)n ·2n ·2n ·n5θ ·n5θ ·k5θ ·
( n
3n/θ

)θ
) = 2O(n) =

2O(k).

Degree. The degree of P is θO(1).

k-Set Splitting. Given a family F ⊆ 2[n] of size m = nO(1) and an integer k, decide whether
there exists a partition A ⊔B = [n] that splits at least k sets of F .

Kernel. As there exists a kernel with 2k sets over the universe of size k for k-Set Splitting [LS09],
we assume that |F| = m ≤ 2k and n ≤ k

Idea. Recall that a partition A ⊔ B = [n] splits a set S ⊆ [n] if there are exists a, b ∈ S such that
a ∈ A and b ∈ B. For a subfamily F ′ ⊆ F , if (A,B) splits exactly q sets of F ′, then there
exist two sets A′ ⊆ A, B′ ⊆ B such that |A′|, |B′| ≤ q ≤ |F ′| and pair (A′, B′) splits at least
q sets of F ′. Such sets A′ and B′ can be constructed by picking a pair (a, b) from each split
set of F ′. If there are k sets in F that are split by (A,B), one can partition them into θ
subfamilies F1, . . . ,Fθ of size at most k/θ such that (A,B) splits all sets in each Fi. Then,
for each Fi, one can choose pair of sets Ai ⊆ A,Bi ⊆ B of size at most k/θ that splits all sets
in Fi.

Variables. Introduce s(G, k) = O(
( n
≤k/θ

)2( m
≤k/θ

)
) = O∗(

( 2k
k/θ

)3
) variables:

X = {xA,B,L : A,B ⊆ [n], |A|, |B| ≤ k/θ,A ∩B = ∅, L ⊆ [m], |L| ≤ k/θ} .
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For a set family S of size m and a set of indices L ⊆ [m] denote by SL a subfamily of S
defined by indices of L. The mapping φ(F , k) assigns the following value to a variable xA,B,L:

[(A,B) splits all sets in FL] .

Complexity. The mapping φ(F , k) can be computed in time O∗(
(
2k
k/θ

)3
).

Polynomial. For every partition A ⊔ B = [n], sets A1, . . . , Aθ ⊆ A, B1, . . . , Bθ ⊆ B such that
|Ai|, |Bi| ≤ k/θ for all i and disjoint sets of indices L1, . . . , Lθ ⊆ [m] such that |Li| ≤ k/θ for
all i, we add the following monomial to Ps(G,k):

∏

i∈[θ]

xAi,Bi,Li

The number of monomials added to Ps(F ,k) is at most O(
( n
k/θ

)2θ( m
k/θ

)θ
) = 2O(k).

Degree. The degree of P is θ.

Cluster Editing. Given a graph G(V,E) with n nodes and an integer k, decide whether G can
be transformed into a cluster graph (i.e., a set of disjoint cliques) using at most k edge modifications
(additions and deletions).

Kernel. As there exists a kernel with 2k nodes for Cluster Editing [CM12], we assume that n ≤ 2k.

Idea. Consider a solution of Cluster Editing for G. Let H be a cluster graph resulting from G
by at most k edge modifications. Take all cliques of size at most n/θ and group them into
t ≤ 2θ blocks each having at most n/θ nodes. Let T1, . . . , Tt be sets of nodes of those blocks.
Let S1, . . . , Ss be sets of nodes of cliques of size more than n/θ. For every i ∈ [s], partition
Si into at most θ blocks of size at most n/θ: Si =

⊔
Sj
i .

To construct the polynomial, we go through all possible {Ti} and {Sj
i } and check whether

it is possible to modify the graph to obtain a cluster graph that is consistent with {Ti} and
{Sj

i }. To do this, let T = {Ti}, S = {Si}, S̃ =
⊔
i,j
{Sj

i }, V = T ⊔ S, and C = T ⊔ S̃. Let

V = {V1, . . . , Vt+s} and C = {C1, . . . , Cm}, where m ≤ 2θ + θ2.

Let k =
∑

1≤a≤b≤m

ka,b, where:

• there are at most ka,a edge modifications in every Ca ∈ T ;

• there are at most kb,b edge additions in every Cb ∈ S̃;

• there are at most ka,b edge additions between every pair of different Ca and Cb, where
Ca, Cb ⊆ Si for some i;

• there are at most ka,b edge deletions between every pair of Ca and Cb, where Ca and Cb

belong to different sets from V.

Now, we can go through all possible T , S, V, and C that are consistent with each other, and
{ka,b} such that

∑
ka,b = k, and check whether for every a, b ∈ [m] there can be done at most

ka,b edge modifications according to cases listed above.
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Variables. Introduce s(G, k) = O(
(

n
≤n/θ

)2
· k) = O∗(

(
2k

2k/θ

)2
) variables:

X = {xT,k′ : T ⊆ V, |T | ≤ n/θ, k′ ∈ [k]} ;

Y = {yS,k′ : S ⊆ V, |S| ≤ n/θ, k′ ∈ [k]} ;

Z = {zS1,S2,k′ : S1 ⊔ S2 ⊆ V, S1, S2 ≤ n/θ, k′ ∈ [k]} ;

W = {wC1,C2,k′ : C1 ⊔ C2 ⊆ V,C1, C2 ≤ n/θ, k′ ∈ [k]} .

The mapping φ(G, k) assigns the following values to the variables:

xT,k′ 7→ [ ≤ k′ edge modifications are needed to make G[T ] a cluster graph] ;

yS,k′ 7→ [ ≤ k′ edge modifications are needed to make G[S] a clique] ;

zS1,S2,k′ 7→ [ ≤ k′ edge modifications are needed to connect each pair of nodes

(v1, v2) by an edge, where v1 ∈ S1, v2 ∈ S2] ;

wC1,C2,k′ 7→ [ ≤ k′ edge modifications are needed to get rid of all edges (v1, v2)

where v1 ∈ C1, v2 ∈ C2] .

Complexity. Each variable from Y ∪ Z ∪ W can be computed in polynomial time. Each variable
xT,k′ can be computed in time O∗(3|T |) by dynamic programming 5. The mapping φ(G, k)

can be computed in time O∗(
( 2k
2k/θ

)2
· 3n/θ) = O∗(

( 2k
2k/θ

)2
· 32k/θ).

Polynomial. For every (T ,S, S̃,V, C, {ka,b}), we add the following monomial:

∏

a∈[m] :
Ca∈T

xCa,ka,a

∏

b∈[m] :

Cb∈S̃

yCb,kb,b

∏

a,b∈[m] :
a<b,

∃i∈[s] Ca,Cb⊆Si

zCa,Cb,ka,b

∏

a,b∈[m] :
a<b,

∃i,j∈[t+s] : i 6=j,
Ca⊆Vi,Cb⊆Vj

wCa,Cb,ka,b .

Degree. The degree of P is θO(1).

k-Path. Given a directed graph G(V,E) with n nodes and integer k, decide whether there is a
simple path with exactly k nodes.

Idea. Let V = [n]. The color-coding technique, introduced by [AYZ95], solves k-Path as follows:
assign a random color c ∈ [k] to every node; then, all nodes of a k-path receive different colors
with probability about e−k; at the same time, one can find such a colorful path in time nO(1)2k.
This gives a randomized 2O(k)nO(1)-time algorithm for k-Path. A way to derandomize it
is to use a k-perfect family F of hash functions f : [n] → [k]: go through all f ∈ F and
for each node v ∈ [n], assign a color f(v) (see [AYZ95, Section 4]). The key feature of the
family F is: for any subset of nodes S ⊆ [n] of size k, there exists a function f ∈ F such
that f is injective on S. It guarantees that for any k-path there is a coloring f ∈ F that

5Let dp[S] be the minimum number of edge modifications that turn G[S] into a cluster graph. Then dp[S] =
min
X⊆S

(|E(X)|+ |E(X,S \X)|+ dp[S \X]) and one can compute dp[S] for all S ⊆ T in time O∗(3|T |).

39



assigns different colors to all nodes of the path. [AYZ95] gives a construction of F of size
O(2O(k) log n). For our purposes, we need a family of smaller size. To achieve this, we allow
a larger number of colors.

Take a family F of (n, k, θk)-splitters of size O(e(k/θ)(1+o(1))nO(1)) = O∗(e2k/θ) that can be
computed in time 29knO(1) guaranteed by Theorem 5.5.

Given a coloring f : [n] → [θk], one can find an f -colorful k-path in time 2θknO(1) [AYZ95,
Lemma 3.1].

The main idea of the polynomial formulation below is the following. For a coloring f : [n] →
[θk], an f -colorful k-path π can be partitioned into θ paths π1, . . . , πθ such that each path
uses at most k/θ colors. Then, a partition π1, . . . , πθ is valid if the paths are color-disjoint
and there is an edge from the last node of πi to the first node of πi+1, for all i ∈ [θ − 1].

Variables. Introduce s(G, k) = O
(
e2k/θ

(
θk

≤k/θ

)
nO(1)

)
= O∗

(
e2k/θ

(
θk
k/θ

))
variables:

X = {xf,C,u,v : f ∈ F , u, v ∈ V,C ⊆ [θk], |C| ≤ k/θ} ,

Y = {yu,v : u, v ∈ V } .

The mapping φ(G, k) assigns the following values:

xf,C,u,v 7→ [there is an f -colorful path from u to v that uses colors from C only] ,

yu,v 7→ [(u, v) ∈ E] .

Complexity. The mapping φ(G, k) can be computed in time O
(

2k/θe2k/θ
( θk
≤k/θ

)
nO(1)

)
=

O∗
(

(2e2)k/θ
( θk
k/θ

))
.

Polynomial. For every f ∈ F , disjoint C1, . . . , Cθ ⊆ [θk] such that |Ci| ≤
k
θ , and distinct nodes

v1, . . . , v2θ ∈ V , add a monomial:
∏

i∈[θ]

xf,Ci,v2i−1,v2i

∏

i∈[θ−1]

yv2i,v2i+1

The number of monomials added to Ps(G,k) is at most e2k/θ
( θk
k/θ

)θ
nO(1) = 2O(k)nO(1).

Degree. The degree of P is 2θ − 1.

k-Tree. Given a tree H on k nodes and a graph G on n nodes, decide whether there is a (not
necessarily induced) copy of H in G.

Idea. Let F be an (n, k, θk)-splitter from Theorem 5.5. Let H1, . . . ,Hm be subtrees of H resulting
from applying Lemma 6.1 to H, where m ≤ θ and |V (Hi)| ≤ 3k/θ. Let I ∈ V (G)V (H) be an
isomorphism between H and some subtree of G. Let Ti = V (Hi), and let Si = I(Ti). Let CT

be connector nodes of B(T1, . . . , Tm), and let CS be connector nodes of B(S1, . . . , Sm). Let

CT
i = Ti ∩ CT , let CS

i = Si ∩ CS, and let Ii = I
∣∣∣
CT

i

. Let f ∈ F be a coloring of V (G) that

assigns different colors to nodes from I(V (H)), and let Fi = f(Si).
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To construct the polynomial, we go through all possible {Ti}, {CS
i }, {Fi} and f such that

Ti ⊆ [k], CS
i ⊆ [n], Fi ⊆ [θk], |Ti| = |Fi| ≤ 3k/θ, |CS

i | ≤ θ − 1 and f ∈ F . We check
that

⋃
CS
i equals to the set of connector nodes of B(CS

1 , . . . , C
S
m), and that B(T1, . . . , Tm),

B(CS
1 , . . . , C

S
m) and B(F1, . . . , Fm) are isomorphic trees where sets with the same numbers

correspond to each other. We compute CT as connector nodes of B(T1, . . . , Tm) and CT
i as

Ti ∩ CT . Now, we define Ii as a bijection between CT
i and CS

i obtained from the above
isomorphism between B(T1, . . . , Tm) and B(CS

1 , . . . , C
S
m) as a restriction to connector nodes.

Now, we have ({Ti}, {C
T
i }, {C

S
i }, {Ii}, {Fi}, f), and we need to check that

• for all i, H(Ti) is a tree;

• for all i, there exists Si ⊆ [n] and J ∈ Bij(Ti, Si) such that:

– CS
i ⊆ Si,

– f(Si) = Fi,

– H[Ti] is isomorphic to G[Si] according to J ,

– J
∣∣∣
CT

i

= Ii.

Variables. Introduce s(H,G, k) = O(
(

k
≤3k/θ

)
kθnθθθ

(
θk

≤3k/θ

)
e2k/θ log n) variables:

X = {xT : T ⊆ [k], |T | ≤ 3k/θ};

Y = {yT,CT ,CS ,I,F,f : T,CT ⊆ [k], CS ⊆ [n],I ∈ (CS)C
T

, F ⊆ [θk],

f ∈ F , |T | = |F | ≤ 3k/θ, |CT | = |CS | ≤ θ − 1} .

The mapping φ(H,G, k) assigns the following values to the variables:

xT 7→ [H[T ] is a tree] ;

yT,CT ,CS ,I,F,f 7→ [there exists a set S ⊆ [n] such that CS ⊆ S, f(S) = F ,

and G[S] is a copy of H[T ], where nodes of H in CT

correspond to nodes of G in CS according to I] .

Complexity. The family F can be computed in time 29knO(1). Each variable from X can be com-
puted in polynomial time. Each variable from Y can be computed in time O∗(83k/θ) by the
following dynamic programming algorithm. Let us view H[T ] as a rooted tree. Let T ′ ⊆ T
such that H[T ′] is connected, let F ′ ⊆ F , and let v ∈ [n]. Let dp[T ′][F ′][v] = [there exists
a subset S ⊆ [n] such that v ∈ S, |S| = |F ′|, f(S) = F ′ and H[T ′] is isomorphic to G[S]
according to some isomorphism J which is consistent with I and which maps the root of
H[T ′] into v]. For T ′, let T ′′ be a subset of T ′ such that H[T ′′] and H[T ′ \T ′′] are connected,
and the root of H[T ′′] is a son of the root of H[T ′]. Then,

dp[T ′][F ′][v] =
∨

F ′′⊆F ′,
u∈[n] : (u,v)∈E(G)

(dp[T ′′][F ′′][u] ∧ dp[T ′ \ T ′′][F ′ \ F ′′][v]) .
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Polynomial. For every ({Ti}, {C
T
i }, {C

S
i }, {Ii}, {Fi}, f), we add the following monomial:

m∏

i=1

xTi

m∏

i=1

yTi,CT
i ,CS

i ,Ii,Fi,f
.

The number of monomials is at most
(

k
3k/θ

)θ(k
θ

)θ(n
θ

)θ
(θθ)θ

(
θk

3k/θ

)θ
e2k/θ log n = 2O(k)nO(1).

Degree. The degree of P is at most 2θ.
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A Omitted Proofs

A.1 Proof of Theorem 4.4

Theorem 4.4. Let A be a parameterized computational problem with a parameter k. Assume that
for every c > 1, there is ∆ = ∆(c) such that A admits a ∆-polynomial formulation of complexity ck.
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If A is λk-SETH-hard for a constant λ > 1, then at least one of the following circuit lower bounds
holds:

• ENP requires series-parallel Boolean circuits of size ω(n);

• for every constant γ > 1, there exists an explicit family of constant-degree polynomials over Z
that requires arithmetic circuits of size Ω(nγ).

Proof. Let λ > 1 be the constant from the theorem statement, γ > 1 be an arbitrary constant, and
σ = log(λ)/(6γ). Let I × N be the set of all instances of A, where for an instance (x, k) ∈ I × N,
k is the value of the parameter. Let P be a ∆-polynomial formulation of A of complexity 2σk, for
constant ∆ = ∆(σ) > 0. We assume that A is λk-SETH-hard: there is a function δ : R>0 → R>0

such that for every q, d ∈ N, q-SAT can be solved in time 2(1−δ)n given a λ(1−ε)k|x|d-algorithm
for A.

If P = (Pt)t≥1 does not have arithmetic circuits over Z of size tγ for infinitely many values of t,
then we have an explicit family of constant-degree polynomials that requires arithmetic circuits
of size Ω(tγ). Hence, in the following we assume that P has arithmetic circuits over Z of size ctγ for
all values of t for a constant c > 0. Under this assumption, we design a non-deterministic algorithm
solving q-TAUT in time 2(1−ε)n for every q. This contradicts NSETH and, by Theorem 2.3, implies
a super-linear lower bound on the size of series-parallel circuits computing ENP.

Let δ0 = δ(1/2) ∈ (0, 1) where δ is the function from the SETH-hardness reduction for A. Let
α = 1

(∆+1)(γ+2∆+8) , L = 2(1−δ0)αn, K = 2(1 − δ0)αn/ log(λ), and T = 2(σK) · L∆. We will start

with an instance of the q-TAUT problem on n variables, reduce it to 2(1−α)n instances of q-TAUT
on αn variables each . Then we’ll use the fine-grained reduction from q-SAT to the problem A on
instances of length ℓ ≤ L and parameter k ≤ K. Finally, we’ll use the polynomial formulation of A
to reduce instances of length ℓ and parameter k to polynomials with t ≤ T variables.

Let F be a k-DNF formula over n variables. In order to solve F , we branch on all but αn vari-
ables. This gives us 2(1−α)n k-DNF formulas. By solving q-SAT on the negations of all of these
formulas, we solve q-TAUT on the original formula F .

Assuming a λk/2-algorithm for A we have a 2(1−δ0)αn-algorithm for q-SAT on αn variables for
δ0 = δ(1/2) > 0. We now apply the fine-grained reduction from q-SAT to A to (the negations
of) all 2(1−α)n instances of q-TAUT. This gives us a number of instances of the problem A. Let
ℓ be the largest length of these instances, and k be the largest value of the parameter in these
instances. Since the running time of the reduction is bounded from above by 2(1−δ0)αn, we have
that ℓ ≤ 2(1−δ0)αn = L. From Definition 2.6, we know that λk/2 < 2(1−δ0)αn, so each instance of A
has the parameter value at most k < 2(1 − δ0)αn/ log(λ) = K.

Since P is a polynomial formulation of A of complexity 2σk, there exist s : I ×N → N, s(x, k) ≤
2σk|x|∆ ≤ 2σKL∆ and φ : I ×N → Z

∗ (both computable in time 2σKL∆) such that for every x ∈ I
and k ∈ N,

• Ps(x,k)(φ(x, k)) 6= 0 ⇔ (x, k) is a yes instance of A ;

• |Ps(x,k)(φ(x, k))| < 22
σk|x|∆ .

Using P, we will solve all instances of A in two stages: in the preprocessing stage (which takes place
before all the reductions), we guess efficient arithmetic circuits for polynomials Pt for all t ≤ T , in
the solving stage, we solve all instances of A using the guessed circuits. Note that we’ll be using
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the polynomials to solve instances of A resulting from q-SAT instances on αn variables. Since L
is the largest length of such an instance of A and K is the largest value of the parameter, we have
that each such instance is mapped to a polynomial with at most s(x, k) ≤ 2σk|x|∆ ≤ 2σKL∆ = T
variables. Therefore, finding efficient arithmetic circuits for polynomials Pt for all t ≤ T will be
sufficient for solving all q-SAT instances of size αn that we obtain in the reductions.

Preprocessing. For every t ≤ T , we find a prime pt in the interval 2t+1 ≤ pt ≤ 2t+2 in non-
deterministic time O(t7) [AKS04, LP19].

Now for every t ≤ T , we reduce all coefficients of the polynomial Pt modulo pt to obtain a
polynomial Qt over Zpt, and let Q = (Q1, Q2, . . .). For every t ≤ T , we now non-deterministically
solve Gap-MACPQ,µ∆2,pt(t, ct

γ) using Lemma 3.5. Since we assume that P has arithmetic circuits
over Z of size ctγ , we have that Q has arithmetic circuits over Zpt of this size. Thus, we obtain
arithmetic circuits Ct of size at most

cµ∆2tγ (5)

computing Qt over Zp for all t ≤ T . Since Ct computes Qt correctly in Zp and |Ps(x,k)(φ(x, k))| <

2s(x,k) ≤ ps(x,k)/2 for all x ∈ Iℓ, we can use Ct to solve A for every instance length ℓ ≤ L and
parameter k ≤ K. By Lemma 3.5, Gap-MACPQ,µ∆2,pt(t, ct

γ) can be solved in (non-deterministic)
time

O
(
∆2 · ctγ · t2∆ · log2(pt)

)
= O

(
T γ+2∆+2

)
.

The total (non-deterministic) running time of the preprocessing stage is then bounded from above
by the time needed to find T prime numbers, write down the corresponding explicit polynomials
modulo pt, and solve T instances of Gap-MACP:

O
(
T (T 7 + T∆+2 + T γ+2∆+2)

)
= O

(
T γ+2∆+8

)
= O

(
2(1−δ0)n

)
, (6)

where the last equality holds due to T = 2σKL∆, L = 2(1−δ0)αn, K = 2(1 − δ0)αn/ log(λ), σ =
log(λ)/(6γ), and α = 1

(∆+1)(γ+2∆+8) .

Solving. In the solving stage, we solve all 2(1−α)n instances of q-SAT by reducing them to A
and using efficient circuits found in the preprocessing stage. For an instance x of A of length ℓ
with parameter k, we first transform it into an input of the polynomial y = φ(x, k) ∈ Z

s(x,k).
Both s(x, k) and φ(x, k) can be computed in time O(2σkℓ∆). Then we feed it into the circuit
Qs(x,k). First we note that we have the circuit Qs(x,k) after the preprocessing stage as s(x, k) ≤ T
and we have circuits (Q1, . . . , QT ). The number of arithmetic operations in Zps(x,k) required to
evaluate the circuit is proportional to the circuit size, and each arithmetic operation takes time
log2(ps(x,k)) = O(s(x, k)2). From (5) with t ≤ s(x, k) ≤ 2σkℓ∆, we have that we can solve an
instance of A with ℓ inputs and parameter k in time

O(2σkℓ∆) + cµ∆2 · s(x, k)2 · 2σγk · ℓ∆γ = O
(

23σγkℓ3∆γ
)

= O
(
λk/2ℓ3∆γ

)
,

where the last equality holds due to the choice of σ = log(λ)/(6γ). The fine-grained reduction
from q-SAT to A implies that a O

(
λk/2ℓO(1)

)
-time algorithm for A gives us a O

(
2n(1−δ0)

)
-time
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algorithm for q-SAT. Thus, since we solve each ℓ-instance of A resulting from 2(1−α)n instances of
q-SAT in time O

(
λk/2ℓO(1)

)
, we solve the original n-variate instance F of q-TAUT in time

O
(

2(1−α)n · (2αn)1−δ0
)

= O
(

2n(1−αδ0)
)
. (7)

The total running time of the preprocessing and solving stages (see (6) and (7)) is bounded
from above by O

(
2n(1−δ0)

)
+ O

(
2n(1−αδ0)

)
= O

(
2n(1−αδ0)

)
, which refutes NSETH, and implies a

super-linear lower bound for Boolean series-parallel circuits.

A.2 Proof of Lemma 6.1

Lemma A.1. Let T (V,E) be a rooted tree and M ⊆ V be a set of more than ℓ nodes. Then there
is a subtree U of T whose topmost node is u such that T [V (T ) \ V (U) ∪ {u}] is connected and
ℓ
2 ≤ |M ∩ (V (U) \ {u})| ≤ ℓ.

Proof. We prove this lemma by induction on the size of the tree T . The base case of |V | = 1 holds
trivially (by choosing U = T ). For the case |V | > 1, suppose the root r of T has m children with
subtrees T1, . . . , Tm. Let ai = |V (Ti) ∩M |. Assume without loss of generality that a1 ≤ . . . ≤ am.
Consider the following three cases.

• If am > ℓ, then we use the induction hypothesis to find U in Tm.

• If ℓ
2 ≤ am ≤ ℓ, then we take U to be the subtree Tm together with the root r. Then

|M ∩ (V (U) \ {u})| = |M ∩ V (Tm)| = am.

• If am < ℓ
2 , then, for all i ∈ [m], ai <

ℓ
2 . As

∑m
i=1 ai ≥ |M | − 1 ≥ ℓ, there exists j ∈ [m] such

that ℓ
2 ≤

j∑
i=1

ai ≤ ℓ. We take U to be the subtrees T1, . . . , Tj together with the root r. This

way we have |M ∩ (V (U) \ {u})| =
j∑

i=1
|M ∩ V (Ti)| =

j∑
i=1

ai.

Lemma 6.1. Let T (V,E) be a tree, M ⊆ V be a set of k nodes, and θ > 1 be an integer. Then
E can be partitioned into m ≤ θ blocks E = E1 ⊔ · · · ⊔ Em such that, for each i ∈ [m], Ei induces
a subtree Ti of T with at most 2k

θ−1 + 2 nodes from M .

Proof. Choose an arbitrary node r of T as the root and view T as a rooted tree. Let ℓ = ⌈ 2k
θ−1⌉. As

long as |V (T )∩M | > ℓ we repeat the following procedure. (Note that it’s possible that in the very
beginning |V (T ) ∩M | = k ≤ ℓ, so we don’t run the procedure even once.) Since |V (T ) ∩M | > ℓ,
Lemma A.1 gives us a tree U and its root u. We take Ti = U , and delete all the vertices V (U)\{u}
from T .

When we can’t apply this procedure anymore, we have |V (T )∩M | ≤ ℓ, and we add the remaining
tree with at most ℓ nodes from M as the last Ti in our collection. Note that each Ti is a subtree,
and each Ti contains at most ℓ+ 1 ≤ 2k

θ−1 + 2 nodes from M . Since each application of Lemma A.1

removes at least ℓ/2 vertices from M , the number of such iterations is at most ⌈ k
ℓ/2⌉ = ⌈2kℓ ⌉. Thus,

the total number of subtrees is m ≤ ⌈2kℓ ⌉ + 1 ≤ ⌈2k(θ−1)
2k ⌉ + 1 = θ.
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