
Property Directed Inference of Relational Invariants
Dmitry Mordvinov

JetBrains Research and Saint-Petersburg State University
Saint-Petersburg, Russia

Dmitry.Mordvinov@jetbrains.com

Grigory Fedyukovich
Princeton University

Princeton, USA
grigoryf@cs.princeton.edu

Abstract—Property Directed Reachability (PDR) is an efficient
and scalable approach for solving systems of symbolic constraints,
also known as Constrained Horn Clauses (CHC). In the case of
non-linear CHCs, which may arise, e.g., from relational verifi-
cation tasks, PDR aims to infer an inductive invariant for each
uninterpreted predicate. However, in many practical cases, this
reasoning is not successful, as invariants need to be discovered
for groups of predicates, as opposed to individual predicates.
We contribute a novel algorithm that identifies such groups
automatically and complements the existing PDR technique. The
key feature of the algorithm is that it does not require a possibly
expensive synchronization transformation over the system of
CHCs. We have implemented the algorithm on top of a state-of-
the-art CHC solver SPACER. Our experimental evaluation shows
that for some CHC systems, on which existing solvers diverge,
our tool is able to discover relational invariants.

I. INTRODUCTION

With the progress in automated approaches to formal veri-
fication of programs against functional specifications [1]–[8],
there is a growing need for applying this technology to verify
multiple programs against relational specifications [9]–[12].
This discipline, called relational verification, is widely appli-
cable in an iterative process of software development, when a
current and the previous versions are compared and verified
for the absence of newly introduced bugs. Another application
is the verification of secure information flow properties, such
as non-interference and time-balancing, in which executions
of the same software are compared for various inputs.

Many automatic relational verification approaches are based
on constructing a product program [9], [13]–[17] from the
programs under comparison. This way, a given relational
specification over multiple programs (or multiple executions of
the same program) becomes a functional specification over the
product program. Conceptually, such a relational-verification
task can be addressed by state-of-the-art techniques, but in
practice, most of them cannot handle a potentially complicated
structure of the product program. The problem can be miti-
gated by merging certain loops in the product program (i.e.,
by applying so-called synchronization strategies), but often
their discovery is manual or based on imprecise syntactic
heuristics. Another downside is that the number of possible
transformations is exponential with the number of merged
programs. This paper contributes a fully automated approach
to identify synchronization strategies that lead to an effective
discovery of relational invariants for product programs.

We build on top of one of the most successful implemen-
tations of Property Directed Reachability (PDR) by Gurfinkel

et. al. [5], called SPACER. PDR incrementally strengthens a
given functional specification (i.e., a safety property) until it
either becomes inductive, or a counterexample is found. It
models programs with a set of logical implications, called
Constrained Horn Clauses (CHCs), over a set of uninterpreted
predicates. Intuitively, CHCs define the semantics of unin-
terpreted predicates, and by determining the satisfiability of
CHCs w.r.t. some safety property, one can discover inductive
invariants for programs under verification. SPACER maintains
over-approximations and under-approximations of the seman-
tics of uninterpreted predicates. It uses over-approximations to
block spurious counterexamples, and under-approximations to
analyze program traces without unrolling.

The CHCs constructed for product programs are essentially
non-linear, and each uninterpreted predicate corresponds to a
program under comparison. We propose a novel PDR-based
approach that maintains over- and under-approximations of
semantics of groups of predicates. It has the same effect
as after doing a product-program transformation, but without
actually transforming the system. More importantly, our algo-
rithm identifies suitable groups of predicates on demand, by
analyzing counterexamples-to-induction, obtained at different
stages of our verification process. This allows us to effectively
prune the search space of possible synchronization strategies,
leading to performance gains. Note that without our approach,
PDR attempts to discover an isolated invariant for uninter-
preted predicate and often does not succeed (because e.g., the
desired invariants are inexpressible by the modeling language).

We have implemented our approach on top of SPACER
and have evaluated it on benchmarks arising from relational
verification tasks. The experiments confirmed that for many
CHC systems, on which SPACER diverges, our approach is
able to discover relational invariants quickly.

The rest of the paper is structured as follows. We give
background on CHCs in Sect. II and then we introduce our
novel concept of relational invariants of CHCs in Sect. III. Our
PDR-based algorithm for the discovery synchronization strate-
gies and relational invariants is then presented in Sect. IV. In
Sect. V, we show our experimental data. And finally, Sect. VI
and Sect. VII concludes the paper.

II. PRELIMINARIES

A. Assertion language

Let Σ be the first-order signature with equality and let M
be some Σ-structure with the domain |M |. For a Σ-sentence ϕ

ISBN: 978-0-9835678-9-9. Copyright owned jointly by the authors and FMCAD, Inc. 152

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on October 25,2022 at 20:06:46 UTC from IEEE Xplore. Restrictions apply.

(i.e. Σ-formula without free variables), M is a model of ϕ if M
satisfies ϕ, written M |= ϕ. Throughout the paper, we refer to
the first-order language defined by Σ as an assertion language.
For Σ-formula with n free variables ϕ(x1, . . . , xn), by M (ϕ)
we denote a set of free variable valuations satisfying ϕ, i.e.,
M (ϕ)

def
= {〈a1, . . . , an〉 | M |= ϕ(a1, . . . , an)} ⊆ |M |n.

B. Constrained Horn Clauses

Let R = {P0, P1, . . . , Pn} be a finite set of predicate
symbols called relational (or uninterpreted) symbols. A con-
strained Horn clause (CHC) C is a Σ ∪ R -formula of the
form

ϕ ∧R1(x1) ∧ . . . ∧Rm(xm) ⇒ R(vR)

where ϕ is a quantifier-free Σ-formula, R,Ri ∈ R , vR and
xi are vectors of variables. The premise of the implication is
called a body of C and denoted by body(C), the conclusion
R(vR) is called a head of the clause. A CHC system is a finite
set of CHCs. We treat the relational symbol P0 as a special
“query” symbol, the root of every derivation tree of a CHC
system. If there is only one application of an uninterpreted
symbol in the premise, the CHC is called linear (otherwise,
non-linear). A CHC system is linear if every CHC in it is
linear.

C. Safety Problem

A safety problem is a pair 〈P , ϕsafe〉, where P =
{C1, . . . , Cn} is a CHC system, and ϕsafe is a Σ-formula
over vP0

, called a safety property. We assume that heads of
clauses C1, . . . , Cn are applications of relational symbols with
identical variables per each relational symbol, i.e., if clauses
Ci and Cj have heads R(vR) and R(v′R), then vR = v′R.

By rules(R) we denote a set of clauses in P with the heads
R(vR). By body(R), we denote a disjunction of rules for R:

body(R)
def
=

∨
C∈rules(R)

body(C)

The merged body of relational symbols R1, . . . , Rm ∈ R is
the conjunction of bodies

body(R1, . . . , Rm)
def
= body(R1)

+∧ . . . +∧ body(Rm),

where ϕ
+∧ ψ is a conjunction of ϕ and ψ that guarantees the

disjointedness of free variables of ϕ ∧ ψ:

ϕ(x)
+∧ ψ(y) def

= (ϕ ∧ ψ) (x 	 y)

We denote by �R the vector of existential (or local) variables
of R, i.e. free variables of body(R) without variables of the
heads vR.

Example 1. Let Σ be a signature, and M be the model of
algebraic data types (ADT) where sort tree is defined with
uninterpreted functions leaf : tree and node : N × tree ×
tree → tree. Consider the following safety problem that
involves 1) counting nodes of a tree (relational symbol size), 2)
summing the values of nodes (relational symbol sum), and 3)

obtaining a new tree by increasing each node value of another
tree by two (relational symbol inc):

T = leaf ∧ n=0 ⇒ size(T,n)

T =node(v,L,R)∧n= 1+n
L
+n

R∧size(L,n
L
)∧size(R,n

R
) ⇒ size(T,n)

T = leaf ∧s=0 ⇒ sum(T,s)

T =node(v,L,R)∧s=v+s
L
+s

R∧
sum(L,s

L
)∧sum(R,s

R
) ⇒ sum(T,s)

T = leaf ∧U= leaf ⇒ inc(T,U)

T =node(v,L,R)∧U=node(v+2,L
′
,R

′
)∧

inc(L,L
′
)∧inc(R,R

′
) ⇒ inc(T,U)

size(T,n)∧sum(T,s)∧inc(T,T
′
) ∧sum(T

′
,s

′
) ⇒ P0(T,n,s,s

′
)

ϕsafe
def
= s

′
=s+2n

We wish to prove that the sum of an inc-ed tree
equals the sum plus twice the count of nodes of
the original tree. Here, R = {P0, size, sum, inc},
vP0

= {T, n, s, s′}, �P0
= {T ′}, vsize = {T, n},

�size =
{
v, L,R, nL, nR

}
, body(size) = (T = leaf ∧ n=0) ∨(

T =node(v,L,R)∧n= 1+nL+nR∧size(L,nL)∧size(R,nR)).

D. Fixedpoint Semantics

Let arities of P0, P1, . . . , Pn be k0, k1, . . . , kn corre-
spondingly. Let X = 〈X0, X1, . . . , Xn〉 be a tuple of
relations with Xi ⊆ |M |ki . We denote the expansion
M {P0 �→ X0, P1 �→ X1, . . . , Pn �→ Xn} by

(
M , X

)
.

A semantics of a CHC system P in structure M is the
pointwise least (n + 1)-tuple of relations X such that for
all P ∈ R ,

(
M , X

) |= ∀vP ∪ �P . (body(P) ⇒ P (vP)).
The semantics of P is a least fixed point of immediate
consequence operator of P ; it always exists by Knaster-Tarski
theorem [18], [19]. We call the elements of the semantics
tuple the semantics of corresponding procedures and write it
as

〈�P0�M , �P1�M , . . . , �Pn�M

〉
.

A CHC system is safe with respect to ϕsafe if �P0�M ⊆
M (ϕsafe). The CHC system in Example 1 is safe with respect
to s′ = s+ 2n.

E. Safety Proofs

An Environment Π maps P ∈ R to Σ-formulas over Σ ∪
vP . For a Σ ∪ R -formula ψ, �ψ�Π is a formula obtained by
instantiating all applications of relational symbols in ψ by their
Π-images.

Given a safety problem 〈P , ϕsafe〉, an environment Π is a
safety proof, if it is safe and inductive:

M |= ∀vP0
.Π(P0) ⇒ ϕsafe (safety)

for all P ∈ R , M |= ∀vP ∪ �P .(�body(P)�Π ⇒ Π(P))

(inductiveness)

Proposition 1. If there is a safety proof for safety problem
〈P , ϕsafe〉, then P is safe with respect to ϕsafe .

III. RELATIONAL INVARIANTS

Systems of CHCs are widely used in automated verification
for proving correctness of programs with respect to safety
specifications. However, when it comes to verifying relational
properties of several programs, modeled as non-linear CHCs,

ISBN: 978-0-9835678-9-9. Copyright owned jointly by the authors and FMCAD, Inc. 153

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on October 25,2022 at 20:06:46 UTC from IEEE Xplore. Restrictions apply.

the reasoning becomes significantly more complex. Often
safety proofs are not expressible in their assertion language.
For instance, although the system over ADTs in Example 1 is
safe, there is no safety proof definable in M .
Example 2. Consider a simpler example:

x=0 ∧ z=0 ⇒ mul(x, y, z)

x > 0 ∧ x
′
=x − 1 ∧ z=z

′
+y ∧ mul(x

′
, y, z

′
) ⇒ mul(x, y, z)

x=x
′ ∧ y=y

′ ∧ mul(x, y, z) ∧ mul(x
′
, y

′
, z

′
) ⇒ P0(x, y, z, x

′
, y

′
, z

′
)

ϕsafe
def
= z=z

′

An invariant mul(x, y, z) = (z = x·y) is undefinable in linear
integer arithmetic (LIA).

In this section, we generalize the notion of safety proof
such that in both cases a definable proof exists. The key
idea is to map groups of relational symbols (in contrast to
singles) into formulas. This allows discovering the relations
among variables from different calculations as opposed to
summarizing each calculation in isolation.

A. Definition of the relational environment

By N
X we denote a set of multisets on X , i.e., a set of all

maps from X to natural numbers. If x = x1, . . . , xn is a vector
of elements of X (possibly repeating), we identify it with a
multiset {xk �→ #xk}, where #xi is a number of occurrences
of xi in x. Multisets are naturally ordered by inclusion: for
m1,m2 ∈ N

X , m1 ⊆ m2 iff ∀x ∈ X,m1(x) ≤ m2(x).

Definition 1. Let P be a system of CHCs over a set
of relational symbols R . A relational environment is a
partial map from N

R to formulas that maps multiset
R = {R1 �→ n1, . . . , Rk �→ nk} to a formula over vR

def
=

vR1
	 . . . 	 vR1︸ ︷︷ ︸
n1 times

	 . . . 	 vRk
	 . . . 	 vRk︸ ︷︷ ︸
nk times

.

Let E be a relational environment. By dom(E) we denote
its domain. We assume that R ⊆ dom(E): if R ∈ R \dom(E),
then we map R to �. Let R1, . . . , Rm be relational symbols
from R , and ϕ be a formula. We (inductively) define

�ϕ ∧R1(x1) ∧ . . . ∧Rm(xm)�E def
= (1)

ϕ ∧
∧

Ri1
,...,Rik

∈{R1,...,Rm}
〈Ri1 ,...,Rik〉∈dom(E)

E(Ri1 , . . . , Rik)(xi1 , . . . , xik)

and�
� k∧

i=1

mi∨
j=1

Fi,j

�
�

E

def
=

∨
1≤j1≤m1

...
1≤jk≤mk

�F1,j1 ∧ . . . ∧ Fk,jk�E (2)

Intuitively, (1) gathers all possible variants of “grouped”
substitutions into (possibly merged) clause body R1(x1) ∧
. . . ∧ Rm(xm). In (2), we use the relational environments to
evaluate merged bodies of relations, which by definition are
conjunctions of disjunctions of clause bodies. In (2), clause
bodies are merged in each of m1 · . . . · mk possible ways,
performing grouped substitution into merged clause bodies.

Example 3. Consider the following CHCs:
ϕ1 ⇒ f(x1, x2)

ϕ2 ∧ f(x
′
1, x

′
2) ∧ f(x

′′
1 , x

′′
2) ⇒ f(x1, x2)

ψ1 ⇒ g(y)

ψ2 ∧ g(y
′
) ⇒ g(y)

and the following relational environment:
E={f �→ �, g �→ η1(y), 〈f, g〉 �→ η2(x1, x2, y)} ,

the evaluation of body(f, g) in E is as follows:

�body(f, g)�E =
�(
ϕ1 ∨

(
ϕ2 ∧ f(x′1, x′2) ∧ f(x′′1 , x′′2)

))∧(
ψ1 ∨

(
ψ2 ∧ g(y′)

))	
E
=

�ϕ1 ∧ ψ1�E ∨ �ϕ1 ∧ ψ2 ∧ g(y′)�E ∨
�ϕ2 ∧ ψ1 ∧ f(x′1, x′2) ∧ f(x′′1 , x′′2)�E∨�ϕ2 ∧ ψ2 ∧ f(x′1, x′2) ∧ f(x′′1 , x′′2) ∧ g(y′)�E=

(ϕ1 ∧ ψ1) ∨ (ϕ1 ∧ ψ2 ∧ η1(y′)) ∨ (ϕ2 ∧ ψ1)∨
(ϕ2 ∧ ψ2 ∧ η1(y′) ∧ η2(x′1, x′2, y′) ∧ η2(x′′1 , x′′2 , y′))

The relational environments generalize the “classical” envi-
ronments: if E is the relational environment with the domain
of singleton multisets, and Π is a “classical” environment
mapping relations to the same formulas, then for all Σ ∪ R -
formulas ϕ, �ϕ�E is logically equivalent to �ϕ�Π.

B. Relational safety proofs

Given a safety problem 〈P , ϕsafe〉, a relational environment
E is a relational safety proof, if it is safe and inductive:

M |= ∀vP0
.E(P0) ⇒ ϕsafe (safety)

for all P ∈ dom(E), M |=∀vP ∪ �P .
(

body(P)
�
E
⇒E(P)

)
(inductiveness)

Besides evaluating the bodies in relational environments, the
main difference between the “classical” and relational safety
proofs is that the latter needs to be inductive relatively to the
merged bodies. That is, if P ∈ dom(E) for non-singleton
multiset P , then E should be inductive relatively to body(P).

Example 4. Although for Example 2 there is no safety proof
definable in LIA, there is a relational safety proof:

E={P0 �→ z=z′,mul �→ �,

〈mul,mul〉 �→ (xmul1 =xmul2∧ymul1 =ymul2 ⇒ zmul1 =zmul2)}
Example 1 has a quantifier-free relational safety proof as well:

E = {P0 �→ s′=s+2n, sum �→ �, inc �→ �,

〈size, sum, sum, inc〉 �→ T size =T sum1 =T inc∧
T sum2 =U inc2 ⇒ ssum2 =ssum1+2nsize}

C. Correctness

Theorem 1. If there is a relational safety proof E for a safety
problem 〈P , ϕsafe〉, then P is safe with respect to ϕsafe .

Proof. By safety of E, it is sufficient to show that �P0�M ⊆
M (E (P0)). We prove it by constructing another CHC system
P ′ and “classical” safety proof Π using E.

ISBN: 978-0-9835678-9-9. Copyright owned jointly by the authors and FMCAD, Inc. 154

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on October 25,2022 at 20:06:46 UTC from IEEE Xplore. Restrictions apply.

For each P ∈ dom(E), we introduce a fresh relational
symbol RP . We define a relational environment E′ that maps
P to RP (vP). Now we define P ′ over the relational symbols
{RP | P ∈ dom(E)}. For each RP , we put body(RP)

def
=

body(P)
�
E′ ; the head of each rule for RP is RP (vP).

For instance, for system P and relational environment E in
Example 3, P ′ is as follows:

ϕ1 ⇒ Rf (x1, x2)

ϕ2 ∧ Rf (x
′
1, x

′
2) ∧ Rf (x

′′
1 , x

′′
2) ⇒ Rf (x1, x2)

ψ1 ⇒ Rg(y)

ψ2 ∧ Rg(y
′
) ⇒ Rg(y)

ϕ1 ∧ ψ1 ⇒ Rf,g(x1, x2, y)

ϕ1 ∧ ψ2 ∧ Rg(y
′
) ⇒ Rf,g(x1, x2, y)

ϕ2 ∧ ψ1 ∧ Rf (x
′
1, x

′
2) ∧ Rf (x

′′
1 , x

′′
2) ⇒ Rf,g(x1, x2, y)

ϕ2 ∧ ψ2 ∧ Rf (x1
′
, x2

′
) ∧ Rf (x1

′′
, x2

′′
) ∧ Rg(y

′
)∧

Rf,g(x1
′
, x2

′
, y) ∧ Rf,g(x1

′′
, x2

′′
, y) ⇒ Rf,g(x1, x2, y)

The semantics of RP in P ′ is the Cartesian product×p∈P
�p�M , as RP uses the disjoint variables and “reaches”

every state reached by each p ∈ P . In particular,

�P0�M = �RP0
�M (3)

Finally, we define a “classical” environment Π mapping RP

to E(P). Π is a safety proof for P ′: it is safe and inductive
by construction. Note that

Π(RP0) = E(P0) (4)

As the semantics of P ′ is the pointwise least inductive tuple
of relations, we have

�RP0
�M ⊆ M (Π(RP0

)) (5)

By (3), (4), and (5), we get:

�P0�M = �RP0
�M ⊆ M (Π(RP0

)) = M (E(P0)) ⊆ M (ϕsafe)

D. Fast evaluation

By (2), a naive implementation of �ϕ�E requires to calculate
m1 · . . . · mk rules, which has the exponential complexity
with the growing k. In this subsection, we demonstrate an
alternative method allowing to avoid an explicit enumeration
of all combinations of rules being merged, which is inherent
to the syntactic transformation [16]. The key insight is to build
an equisatisfiable formula instead of precise calculation using
rules (1) and (2).

Let R1(x1), . . . , Rm(xm) be all applications of relational
symbols in ϕ. For each application Ri(xi), we introduce a
fresh propositional atom (i.e., a nullary predicate symbol) ai.
Let ϕ′ be a formula obtained by replacing all occurrences of
Ri(xi) with ai for all i in ϕ. Note that �ϕ�E is equisatisfiable
with:

ϕ′ ∧
∧

Ri1
,...,Rik

∈{R1,...,Rm}
〈Ri1

,...,Rik〉∈dom(E)

(
ai1∧. . .∧aik⇒E(Ri1 , . . . , Rik)(xi1 , . . . , xik)

)

Example 5. Recall Example 3. The following formula is
equisatisfiable with �body(f, g)�E :
(
ϕ1 ∨ (ϕ2 ∧ a1 ∧ a2)

) ∧ (
ψ1 ∨ (ψ2 ∧ a3)

) ∧ (
a3 ⇒ η1(y

′)
)∧

∧(a1 ∧ a3 ⇒ η2(x
′
1, x

′
2, y

′)
) ∧ (

a2 ∧ a3 ⇒ η2(x
′′
1 , x

′′
2 , y

′)
)

We use this method in our implementation of RELRECMC
(see Sect. IV); it allows us to preserve compositionality in
the relational lemma inference and significantly improves the
speed of the evaluation in relational environments compared
to the naive implementation.

IV. ALGORITHM

In this section, we formulate a property-directed algorithm
for automatically inferring relational invariants. Our algorithm
extends the RECMC algorithm [5]; from where we borrow the
notation and general structure of the algorithm.

A. Bounded assertion maps

The algorithm stores its data in two data structures called a
bounded assertion map and a relational bounded assertion map.
The former maps P ∈ R and a natural number b to a set of
formulas over vP , and the latter maps a multiset P ∈ N

R and
a natural number b to a set of formulas over vP . Our algorithm
maintains a bounded assertion map ρ and a relational bounded
assertion map σ.

Our algorithm uses ρ to witness a counterexample to safety
and σ to build a relational safety proof. In particular, ρ
stores the reachability facts, i.e., reachable branches of the
system; ρ(P, b) is a set of formulas, under-approximating
the b-bounded semantics of P , i.e., the union of top-down
derivations of the system P of the height b. Dually, σ stores
summary facts of the system, also known as lemmas. Formulas
in σ(P, b) over-approximate the b-bounded semantics of P and
are used for building a relational safety proof.

Finally, ρ and σ implicitly define the “classical” environ-
ment U b

ρ and relational environment Ob
σ , respectively. The

former under-approximates and the latter over-approximates
the bounded semantics of the system:1

U b
ρ(P)

def
=

∨
{δ ∈ ρ(P, c) | c ≤ b}

Ob
σ(P)

def
=

∧{
δ ∈ σ(R, c) | R ∈ dom(σ), R ⊆ P , c ≥ b

}

Note that lemmas for a multiset P subsume the lemmas of
multisets included into P .

We abbreviate �π�Ub
ρ

and �π�Ob
σ

to �π�bρ and �π�bσ cor-
respondingly. For simplicity, we define U−1

ρ and O−1
σ (i.e.,

environments for level −1) to be relational environments
mapping every multiset to ⊥.

B. Outer loop

Algorithm 1 shows a pseudo-code of the RELRECMC
procedure that iteratively weakens reachability facts ρ and
strengthens summary facts σ until either ρ witnesses a coun-
terexample (line 4) or σ becomes inductive (line 12). An

1The conjunction of an empty set is �, the disjunction is ⊥.

ISBN: 978-0-9835678-9-9. Copyright owned jointly by the authors and FMCAD, Inc. 155

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on October 25,2022 at 20:06:46 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Pseudocode of RELRECMC

Input: Safety problem
〈

P , ϕsafe

〉
Output: out ∈ 〈SAFE/UNSAFE , relational proof, counterexample〉

1 b← 0; ρ← ∅; σ ← ∅;
2 while true do
3 〈res, ρ, σ〉 ← RELBNDSAFETY(

〈
P , ϕsafe

〉
, b, ρ, σ);

4 if res = REACHABLE then return 〈UNSAFE , , ρ〉;
5 else
6 inductive ← true;
7 foreach P such that

〈
P , b

〉 ∈ dom(σ) do
8 foreach δ ∈ σ (

P , b
)

do
9 if

�
body(P)

�b

σ
∧ ¬δ ⇒⊥ then

10 σ ← σ ∪ {〈
P , b+ 1

〉 �→ δ
}

;

11 else inductive ← false;

12 if inductive then return
〈
SAFE , Ob

σ ,
〉

;
13 b← b+ 1;

iteration b of RELRECMC checks if the property violation
is reachable in b steps. If no bug is reachable (lines 6 - 11),
σ contains a proof of bounded safety for b steps. RelRecMc
then propagates all inductive lemmas from σ to level b + 1
and iterates if they are not sufficient for concluding the safety.
C. Inner loop

The RELBNDSAFETY algorithm shown in Algorithm 2
checks the safety of all top-down derivations of the system
with all heights of derivations bounded by a given level B. It
formulates and solves bounded reachability queries

〈
P , π, b

〉
,

where P ∈ N
R , π is the negation of a safety property for P ,

and b ∈ N. Intuitively, to answer
〈
P , π, b

〉
, we determine if P

does not reach π in b steps.
Queries are stored in a queue Q that initially contains

only 〈P0,¬ϕsafe , B〉. Each iteration begins with picking a
query with the smallest b (line 3), which may be answered
positively (line 12) or negatively (line 8) or may give birth
to child queries to be answered prior to answering this query
(line 31). When all queries are answered, the algorithm returns
the (UN−)REACHABLE result (line 34 or 32, respectively).

a) Inference of reachability facts: If π is reachable in
one step from predecessors bounded by b − 1 steps (line 4),
the algorithm deduces new reachability facts for every P [i]
(line 7). Informally, instead of exploring all branches of P [i],
the algorithm explores only a single branch ψP [i], chosen in
a property-directed manner. Each query

〈
R, η, c

〉 ∈ Q, where
η is reachable with the updated environment U c

ρ , is answered
and removed from Q (in particular,

〈
P , π, b

〉
).

To obtain a symbolic expression for a branch ψP [i], the
algorithm uses a model-based projection (MBP) [5], [20].
Given a formula ∃x.τ , where τ is quantifier-free, and a model
m, an MBP(τ, x,m) produces a quantifier-free conjunction
of literals τ ′, such that m |= τ ′, τ ′ ⇒ ∃x.τ , and if
M admits quantifier elimination, then for each formula τ ,
there is a finite number of models m1, . . . ,mk, such that
∃x.τ ⇔ ∨k

i=1 MBP(τ, x,mi). Intuitively, a series of model-
based projections perform quantifier elimination from ∃x.τ
lazily. Given m, MBP

(

body(P [i])

�b−1

ρ
, �P [i],m

)
can be

viewed as picking a branch of P [i], satisfied by m, and elimi-

Algorithm 2: Pseudocode of RELBNDSAFETY

Input: Safety problem
〈

P , ϕsafe

〉
, levelB, bounded assertion maps ρ, σ

Output: out ∈ 〈REACHABLE/UNREACHABLE , ρ, σ〉
Data: Queue of bounded reachability queries Q

1 Q← {〈P0,¬ϕsafe , B
〉};

2 while (Q �= ∅) do
3 pick

〈
P , π, b

〉
from Q;

4 if ∃m.m |= �
body(P)

�b−1

ρ
∧ π then

5 for i← 1 to
∣∣P ∣∣ do

6 ψP [i] ← MBP
(�

body(P [i])
�b−1

ρ
, �P [i],m

)
;

7 ρ← ρ ∪ {〈P [i], b
〉 �→ ψP [i] | 1 ≤ i ≤ n};

8 Q← Q \ {〈R, η, c〉 | R ⊆ P , c≥b,
+∧|R|
i=1ψR[i] ∧ η �⇒⊥};

9 else if
�
body(P)

�b−1

σ
∧ π ⇒⊥ then

10 let ψ be s.t.
�
body(P)

�b−1

σ
⇒ ψ and ψ ∧ π ⇒⊥;

11 σ ← σ ∪ {〈P , b〉 �→ ψ};
12 Q← Q \{〈

R, η, c
〉 | P ⊆ R, c ≤ b,

�∧
i R[i](vR[i])

�c

σ
∧ η ⇒⊥

}
;

13 else
14 let cti |= �

body(P)
�b−1

σ
∧ π;

15 ψ ← π;
16 apps ← ∅;
17 for i← 1 to

∣∣P ∣∣ do
18 let C ∈ rules(P [i]) be s.t. cti |= �body(C)�b−1

σ ;
19 η ∧R1(x1) ∧ . . . ∧Rm(xm)← body(C);
20 ψ ← ψ ∧ η;
21 for j ← 1 to m do
22 if cti |= �Rj(xj)�b−1

ρ then
23 ψ ← ψ ∧ �Rj(xj)�b−1

ρ ;

24 else apps ← apps ∪ {Rj(xj)};
25 Groups ← PARTITION(apps, π, ψ);
26 for {i1, . . . , ik} ∈ Groups do
27 rels ← 〈

Ri1 , . . . , Rik

〉
;

28 vars ← xi1 . . . xik ;

29 ψ′ ← ψ ∧
�∧

Rj(xj)∈apps

j �∈{i1,...,ik}
Rj(xj)

�b−1
σ

;

30 ψ′ ← MBP
(
ψ′, vP ∪ �P \ vars, cti

)
;

31 Q← Q ∪ {〈rels, ψ′[vars ← vrels], b− 1〉};

32 if �P0�nρ ∧ ¬ϕsafe �⇒⊥ then return 〈REACHABLE , ρ, σ〉;
33 assert �P0�nσ ∧ ¬ϕsafe ⇒⊥;
34 return 〈UNREACHABLE , ρ, σ〉;

nating local variables �P [i] from it. Lazy quantifier elimination
keeps the size of the reachability facts small and allows to
consider only relevant behaviours of the system. In particular,
although ∃x.τ is equivalent to a disjunction of branches, the
algorithm considers only one branch per query; other branches
will be considered on demand in the next iterations.

b) Inference of summary facts: If σ is strong enough to
prove the unreachability of π (line 9), RELBNDSAFETY infers
a new lemma by computing a Craig interpolant (denoted later
ITP) of

body(P)

�b−1

σ
and ¬π. As a result, the new lemma

over-approximates the b-bounded semantics of P , still proving
its safety relatively to π. Note that the resulting lemma is
formulated over the variables of P , expressing relations among
elements of P . Every query

〈
R, η, c

〉 ∈ Q, such that the
updated σ proves the unsatisfiability of η, is immediately an-

ISBN: 978-0-9835678-9-9. Copyright owned jointly by the authors and FMCAD, Inc. 156

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on October 25,2022 at 20:06:46 UTC from IEEE Xplore. Restrictions apply.

swered and removed from the queue (in particular,
〈
P , π, b

〉
).

c) Query generation: If neither

body(P)

�b−1

ρ
∧ π is

satisfiable, nor

body(P)

�b−1

σ
∧ π is unsatisfiable, then the

reachability facts at level b − 1 are too strong to witness a
counterexample, while summary facts at level b − 1 are too
weak to prove the safety. In this case, there is a potential
counterexample (counter-example to inductiveness in terms of
IC3 [21]) cti assigned on line 14, which should be witnessed
by ρ or blocked by σ. The algorithm generates child queries,
answers to which would help answering

〈
P , π, b

〉
by either

blocking the CTI or proving its reachability.
For each relation in P , the algorithm picks a clause C

witnessing cti (line 18). Such clause is guaranteed to exist
because cti |=

body(P)
�b−1

σ
. Let R1(x1), . . . , Rm(xm) be

all applications of relational symbols in C (line 19). In the
next steps the algorithm tries to strengthen the summary
facts by inferring lemmas blocking the CTI. To get this, the
algorithm detects which summary facts are too coarse by split-
ting R1(x1), . . . , Rm(xm) into two groups: the applications
witnessing cti (line 22) and other applications apps (line 24).
As reachability facts of applications in the first group are
already weak enough to witness the counterexample, it doesn’t
make sense to strengthen their summary facts, so the algorithm
proceeds with strengthening apps.

At this step the algorithm behaves differently from the
one in [5]. Instead of strengthening summary facts for each
relation separately, it tries to infer the lemma for the group of
predicates in apps.

The algorithm is parametrized by an oracle PARTITION
(line 25) that splits the input set of atoms into a list of
multisets of symbols and a list of vectors of variables from
the corresponding applications. For example, the set of atoms
{f(x1), f(x2), g(y)} could be split into the list of multisets
[{f �→ 2}, {g �→ 1}] of relations and the list of vectors the
[〈x1, x2〉 , y] of variables. As a result, the rels list contains all
multisets of symbols to be explored in the child queries.

In our implementation, PARTITION splits applications into
a recursive and a non-recursive group2. If the recursive group
has more than

∣∣P ∣∣ elements, it gets partitioned into the groups
of size at most

∣∣P ∣∣. This blocks the size of the queried
multisets from the unbounded growth. PARTITION guesses a
suitable partitioning of the recursive applications by detecting
the synchronizations that preserve the inductiveness of the
property in spirit of [16] (Sect. IV-D demonstrates its work
on Example 1).

For each multiset in rels the algorithm generates its own
safety property, underapproximating the set of bad states of the
group. The safety property for j-th group is the conjunction
of the parent safety property π (line 15), the constraints
of all clauses witnessing cti (line 20), the reachable child
states witnessing cti (line 23) and summary facts of the
remaining multisets in the partitioning (line 29). Intuitively,

2Two symbols are (mutually) recursive if they belong to the same strongly
connected component in the directed graph (V,E) with V = R and (P,R) ∈
E iff R occurs in the body of some rule for P .

RELBNDSAFETY strengthens the safety property π with the
reachability information and child lemmas related to cti .
Afterward, the algorithm projects away all variables except
vars[j] from the child safety property using MBP (line 30),
renames the variables and places a new bounded reachability
query into the queue (line 31). Note that the variables of child
safety property renamed to formulate the property in terms of
child relations (line 31). Similar to the inference of reachability
facts, using MBP does not break the correctness, while keeping
the size of query formulas small.

D. Example

In this subsection, we demonstrate the several iterations of
our algorithm for the problem in Example 1. We prefer brevity
to accuracy, so we simplify formulas wherever possible. For
instance, we write ⊥ instead of n=0 ∧ ⊥ and P0 instead of
the multiset {P0 �→ 1}.

After the syntactic preprocessing, the algorithm handles the
following system of CHCs, in which all variables are disjoint:

T1= leaf ∧ n=0 ⇒ size(T1,n)

T1=node(v1,L1,R1) ∧ n = 1+n
L
+n

R∧
size(L1,n

L
) ∧ size(R1,n

R
) ⇒ size(T1,n)

T2= leaf ∧s2=0 ⇒ sum(T2,s2)

T2=node(v2,L2,R2)∧s2=v2 + s
L
2+s

R
2 ∧

sum(L2,s
L
2)∧sum(R2,s

R
2) ⇒ sum(T2,s2)

T4= leaf ∧U= leaf ⇒ inc(T4,U)

T4=node(v4,L4,R4)∧U=node(v4+2,L
′
,R

′
)∧

inc(L4,L
′
)∧inc(R4,R

′
) ⇒ inc(T4,U)

A=T0 ∧ B=T0 ∧ C=T0 ∧ D=E ∧ size(A,n0)∧
sum(B,s0)∧ inc(C,D) ∧sum(E,s

′
0) ⇒ P0(T0,n0,s0,s

′
0)

ϕsafe
def
= s

′
0=s0+2n0

a) Level 0: The algorithm begins with calling REL-
BNDSAFETY for level 0 that puts query 〈P0, s

′
0 �= s0+2n0, 0〉

into Q. Both �body(P0)�−1
ρ and �body(P0)�−1

σ are ⊥, so the
algorithm gets into line 11, where it adds ITP(⊥,¬ϕsafe)=⊥
into σ(P0, 0). RELBNDSAFETY terminates with the result
UNREACHABLE , but since the added lemma is not induc-
tive, RELRECMC proceeds to level 1.

b) Level 1: The RELBNDSAFETY algorithm begins with
Q = {〈P0, s

′
0 �= s0+2n0, 1〉}. Here, �body(P0)�0ρ ≡ ⊥ and

�body(P0)�0σ ≡ ϕ0
def
= A = T0 ∧ B = T0 ∧ C = T0 ∧D = E.

Since ϕ0 ∧ ¬ϕsafe is satisfiable, the algorithm extracts cti =
{A,B,C,D,E, T0 �→ leaf ;n0 �→ 1; s0 �→ 0; s′0 �→ 1} and
goes to line 14. Then it picks the only possible rule for P0

with the body ϕ0 ∧ size(A,n0) ∧ sum(B,s0) ∧ inc(C,D) ∧
sum(E,s′0). Now cti �|= �size(A,n0)�0ρ ≡ A = leaf ∧
n0 = 0, cti |= �sum(B,s0)�0ρ, cti |= �inc(C,D)�0ρ, cti �|=
�sum(E,s′0)�0ρ, so we get apps = {size(A,n0), sum(E,s′0)}
and ψ ≡ ¬ϕsafe ∧ϕ0∧B= leaf ∧s0=0∧C= leaf ∧D= leaf .
Since both inc and sum are non-recursive with P0, the PAR-
TITION oracle does nothing: PARTITION(apps) = {{1, 4}}.

Let α1 = {size �→ 1, sum �→ 1}. To obtain the child
bounded reachability query for α1, the algorithm projects
away all variables from ψ except A, n0, E, and s′0, obtaining

ISBN: 978-0-9835678-9-9. Copyright owned jointly by the authors and FMCAD, Inc. 157

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on October 25,2022 at 20:06:46 UTC from IEEE Xplore. Restrictions apply.

ψ′ ≡ MBP(ψ, {T0, B, C,D, s0}, cti) ≡ A = leaf ∧ E =

leaf ∧ s′0 �= 2n0, which becomes after renaming ψ1
def
=

T1 = leaf ∧ T2 = leaf ∧ s2 �= 2n. Thus, Q becomes
{〈P0,¬ϕsafe , 1〉 , 〈α1, ψ1, 0〉}, and the algorithm iterates.

At the second iteration, the algorithm picks a query
〈α1, ψ1, 0〉 as the one having the minimal level. Let β1

def
=�body(α1)�−1

ρ ≡ �body(α1)�−1
σ ≡ T1 = leaf ∧ n= 0 ∧ T2 =

leaf ∧ s2 = 0. Since β1 ∧ ψ1 is unsatisfiable, the algorithm
derives a new lemma δ1

def
= ITP(β1, ψ1) ≡ T1=T2= leaf ∧n=

s2 = 0. Thus, σ(α1, 0) = {δ1}, and the query at level 0 is
answered and removed from Q.

At the third iteration, the algorithm picks a query
〈P0,¬ϕsafe , 1〉 again. This time, �body(P0)�0σ ≡
ϕ0 ∧ δ1(A, n,B, s0) ∧ δ1(A, n,E, s

′
0). Since now�body(P0)�0σ ∧ ¬ϕsafe is unsatisfiable, σ(P0, 1) is updated to

ITP(�body(P0)�0σ ,¬ϕsafe) ≡ ϕsafe . The new environment is
not inductive, so RELRECMC proceeds to level 2.

c) Level 2: Query 〈P0,¬ϕsafe , 2〉 is picked from Q.
Now, cti = {A,B,C, T0 �→ node(0,leaf ,leaf);D,E �→
leaf ;n0, s0, s

′
0 �→ 1}. As cti �|= �size(A,n0)�1ρ, cti �|=

�sum(B,s0)�1ρ, cti �|= �inc(C,D)�1ρ, cti �|= �sum(E,s′0)�1ρ, we
get apps = {size(A,n0), sum(B,s0), inc(C,D), sum(E,s′0)}.
As none of the symbols is recursive with P0, we get
Groups = {{1, 2, 3, 4}}. To get the child safety prop-
erty, the algorithm projects away T0 and iterates with
{〈P0,¬ϕsafe, 2〉 , 〈α2, ψ2, 1〉}, where α2

def
= {size �→1, sum �→

2, inc �→1} and ψ2
def
= T1=T2=T4 ∧ U=T3 ∧ s3 �= s2 + 2n.

At the next iteration, 〈α2, ψ2, 1〉 is picked from Q. Rel-
RecMc applies the technique described in Sect. III-D for the
fast evaluation in σ. Let

βsize
def
=(T1= leaf ∧ n=0)∨
(T1=node(v1,L1,R1) ∧ n = 1+nL+nR ∧ aL ∧ aR)

βsum1

def
=(T2= leaf ∧s2=0)∨
(T2=node(v2,L2,R2)∧s2=v2 + sL2+sR2 ∧ bL ∧ bR)

βsum2

def
=(T3= leaf ∧s3=0)∨
(T3=node(v3,L3,R3)∧s3=v3 + sL3+sR2 ∧ cL ∧ cR)

βinc
def
=(T4= leaf ∧U= leaf)∨
(T4=node(v4,L4,R4)∧U=node(v4+2,L′,R′) ∧ dL ∧ dR)

Here aL, aR, bL, bR, cL, cR, dL, and dR are fresh Boolean
abstractions of relational symbol applications. Then:

�body(α2)�
0
σ ≡βsize ∧ βsum1 ∧ βsum2 ∧ βinc∧

(aL ∧ bL ⇒ δ1(L1, nL, L2, s
L
2))∧

(aL ∧ bR ⇒ δ1(L1, nL, R2, s
R
2))∧

(aL ∧ cL ⇒ δ1(L1, nL, L3, s
L
3)) . . .

If instead we straightforwardly convert the �body(α2)�0σ
into DNF and replace each possible combination of relational
applications with δ1, we would get 24 times larger formula.�body(α2)�0σ ∧ ψ2 is satisfiable, and
cti={Tk �→node(1,leaf ,leaf);T3, U �→node(3,leaf ,leaf); . . .}
for k ∈ {1, 2, 4}. Thus at line 18, the algorithm picks the
second (recursive) rule for each relation in R .

Suppose now that none of the child reachability facts is sat-
isfied by cti. Then we get apps = {size(L1,n

L),size(R1,n
R),

sum(L2,s
L
2), sum(R2,s

R
2), sum(L3,s

L
3), sum(R3,s

R
3),

inc(L4,L
′), inc(R4,R

′)}, with only recursive relations, and
ψ ≡ ψ2∧T1=node(v1,L1,R1)∧n = 1+nL+nR∧. . ..

If PARTITION merges all applications into one group, we
get the bounded reachability query for 8 relations, which may
result in the query for 16 relations, and so on; in result,
RELBNDSAFETY diverges. To control the size of multisets,
PARTITION splits apps into groups of the size less or equal
than |α2| = 4. But there is already C4

8 = 70 different variants
of splitting 8 applications into two groups of size 4. To pick the
best combination, PARTITION applies the following heuristic.

Since each bounded reachability query is created using
MBP, it is a conjunction of literals. For each subset of apps,
PARTITION detects the maximal inductive subset of literals.

In this case, the set of literals in ψ2 is
{T1=T2, T1=T4, U=T3, s3 �=s2+2n}. For example, T1 ∧T2
is inductive relatively to size(R1,n

R) and sum(R2,s
R
2).

To verify this, we rename T1 = T2 to R1 = R2 (as T1, R1

and T2, R2 are the first arguments in applications of
respectively size and sum), and check ψ ⇒ R1 = R2. In
our case, the whole ψ2 is inductive relatively to the groups
{size(L1,n

L),sum(L2,s
L
2),sum(L3,s

L
3),inc(L4,L

′)} and
{size(R1,n

R),sum(R2,s
R
2),sum(R3,s

R
3),inc(R4,R

′)}, so
PARTITION outputs Groups = {{1, 3, 5, 7}, {2, 4, 6, 8}}. For
both groups, the bounded reachability queries for α2 at level
0 are added into Q.

At the following iterations, the algorithm infers the lemma
T1 =T2 =T4 ∧ U =T4 ⇒ s3 = s2+2n and accomplishes the
construction of a relational safety proof.

E. General properties

We now state the important properties of RELRECMC
and RELBNDSAFETY. For the proof sketches, the reader is
referred to [5].

Theorem 2. RELRECMC and RELBNDSAFETY are sound.

Theorem 3. RELBNDSAFETY is complete relatively to an
oracle for satisfiability in M .

Theorem 4. Given an oracle for satisfiability in M , REL-
BNDSAFETY terminates.

By Theorem 4, RELRECMC is a co-semidecision procedure
for safety problems, i.e., if P is unsafe, the procedure is
guaranteed to find a counterexample to safety. For finite-state
systems, RELRECMC is a complete decision procedure; in this
case, the algorithm is polynomial in the number of states.

If Algorithm 2 executes line 25 and Groups contains
only singleton sets, then the behavior of RELBNDSAFETY
is consistent with the behavior of BNDSAFETY [5]. In other
words, our algorithm behaves the same as BNDSAFETY on
linear CHC systems and generalizes its behavior on non-linear
CHC systems. If PARTITION groups the input applications into
singleton sets, then the algorithm infers the “classic” safety
proofs, behaving similarly to the original algorithm.

ISBN: 978-0-9835678-9-9. Copyright owned jointly by the authors and FMCAD, Inc. 158

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on October 25,2022 at 20:06:46 UTC from IEEE Xplore. Restrictions apply.

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

RELRECMC performance.

C
om

pe
tin

g
to

ol
pe

rf
or

m
an

ce
:

S
PA

C
E

R
,

H
O

IC
E

,a
nd

C
H

C
P

R
O

D
U

C
T

.

Figure 1: RELRECMC vs competitors. Each point in a plot represents a pair of the run
times (sec × sec) of RELRECMC (x-axis) and a competitor (y-axis). Timeouts are placed
on the inner dashed lines; and crashes are on the outer dashed lines.

While in some cases the RECMC algorithm [5] fails to
infer a safety proof for nonlinear systems simply because
every model of the system is undefinable in the assertion
language, our algorithm manages to infer a relational safety
proof. Conversely, whenever the RECMC algorithm succeeds
to prove or disprove the safety, our algorithm succeeds as well.

V. EVALUATION

We have implemented our algorithm on the top of SPACER,
a state-of-the-art CHC solving engine in Z3 SMT-solver [22]3.
We have evaluated the implementation against SPACER and the
HOICE tool [8] on two benchmark suites4. We have run the
experiments on an Arch Linux machine Intel(R) Core(TM) i5-
6200U CPU @ 2.30GHz processor with a 30-second timeout.

The first benchmark suite contains 840 “classic” safety
problems from [8], not arising from relational verification.
We have compared our implementation with SPACER and
HOICE [8] and demonstrated its viability. SPACER solved 788
out of 840 problems with 50 timeouts and 2 runtime errors.
Our implementation solved 806 problems with 34 timeouts.
The overhead on solved problems is insignificant (less than
0.1 sec on 87% of problems). Our implementation solved most
of the problems solved by SPACER. However, there are 10
problems solved by SPACER, but not by our implementation,
currently. HOICE solved 808 problems with 26 timeouts and
6 runtime errors, but both SPACER and our implementation of
RELRECMC outperformed HOICE on the solved problems.

The second benchmark suite contains 37 relational verifi-
cation problems adapted from [23]. We have evaluated our
implementation against SPACER, HOICE, and the CHCPRO-
DUCT algorithm [16] implementing a syntactic transformation
of the input system with the subsequent solution by SPACER.
A schematic comparison is shown in Fig. 1.

Both SPACER and HOICE solved only 11 of 37 problems
within a 5-minute timeout. CHCPRODUCT solved 24 prob-
lems, and RELRECMC solved 32 out of 37 problems. Note
that RELRECMC solved some problems that SPACER provided
with syntactically merged clauses did not solve. For large
unsafe problems, e.g., point-location*, CHCPRODUCT

3The implementation is available at https://github.com/dvvrd/z3.
4Benchmarks are available at https://github.com/dvvrd/spacer-benchmarks.

generates the exponential amount of rules and times out, but
other solvers detect a counterexample in a few seconds.

VI. RELATED WORK

Various relational verification techniques are based on au-
tomated or semi-automated analysis of product programs [9]–
[17], [24]. All these approaches treat a verification engine
for functional specification as black-box. Thus they have to
predetermine the synchronization strategies. In contrast, our
approach does not construct a product program explicitly but
leverages an SMT solver while discovering both synchroniza-
tion strategies and relational invariants at the same time.

Cartesian Hoare Logic [25], [26] for proving k-safety prop-
erties consists in a set of rules and heuristics for aligning loops
in programs under comparison. These techniques analyze loop
guards, conditionals, relational pre- and postconditions. To
detect a synchronization strategy, [26] identifies a maximal
group of loops, where the termination of one loop implies
the termination of others (otherwise, it fails to find relational
invariants, even if they exist). In contrast, our approach is
agnostic to termination properties and can discover relational
invariants for loops with unequal numbers of iterations.

There are some transformation techniques for nonlinear
CHC systems that enable existing solvers to discover a rela-
tional invariant automatically [15], [16]. The CHCPRO-DUCT
transformation [16] resembles a Cartesian product over a
set of relation symbols of the CHC system. When the rela-
tional symbols that are being transformed have clauses with
more than one recursive reference, the CHCPRODUCT is not
uniquely determined. In order to tackle this, an extension of the
technique called synchronous CHCPRODUCT tries to select a
product that joins structurally similar recursive references to-
gether. Alternatively, [15] proposes a transformation based on
well-known FOLD/UNFOLD rules. Although the resulting CHC
systems are easier to solve, the cost of these transformations
grows exponentially with the number of merged predicates.
By comparison, our approach transforms recursive references
on demand using models of SMT queries and thus does not
lead to an exponential explosion in complexity.

A recent technique [17] is the closest to our work. It ana-
lyzes counterexamples to identify a non-lockstep synchroniza-
tion strategy, but it uses a given set of predicates to discover
relational invariants. In contrast, our approach does not require
predicates and obtain invariants using interpolation, effectively
exploiting the features inherited from [5]. We plan to support
non-lockstep synchronization strategies in our future work.

VII. CONCLUSION

We have presented a novel approach based on PDR to solve
non-linear CHCs. Its key feature is the ability to discover
relational invariants that safely over-approximate semantics
of groups of uninterpreted predicates. More importantly, our
approach identifies automatically which predicates should be
considered in groups. We have implemented the algorithm on
top of the SPACER tool and confirmed its practical success on
a set of benchmarks arising from relational verification tasks.

ISBN: 978-0-9835678-9-9. Copyright owned jointly by the authors and FMCAD, Inc. 159

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on October 25,2022 at 20:06:46 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient implementation of
property directed reachability,” in FMCAD. IEEE, 2011, pp. 125–134.

[2] K. Hoder and N. Bjørner, “Generalized property directed reachability,”
in SAT, ser. LNCS, vol. 7317. Springer, 2012, pp. 157–171.

[3] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “IC3 modulo theories
via implicit predicate abstraction,” in TACAS, ser. LNCS, vol. 8413.
Springer, 2014, pp. 46–61.

[4] K. L. McMillan, “Lazy annotation revisited,” in CAV, ser. LNCS, vol.
8559. Springer, 2014, pp. 243–259.

[5] A. Komuravelli, A. Gurfinkel, and S. Chaki, “SMT-Based Model Check-
ing for Recursive Programs,” in CAV, ser. LNCS, vol. 8559, 2014, pp.
17–34.

[6] D. Jovanovic and B. Dutertre, “Property-directed k-induction,” in FM-
CAD. IEEE, 2016, pp. 85–92.

[7] G. Fedyukovich and R. Bodı́k, “Accelerating Syntax-Guided Invariant
Synthesis,” in TACAS, Part I, ser. LNCS, vol. 10805. Springer, 2018,
pp. 251–269.

[8] A. Champion, N. Kobayashi, and R. Sato, “HoIce: An ICE-Based
Non-linear Horn Clause Solver,” in Asian Symposium on Programming
Languages and Systems. Springer, 2018, pp. 146–156.

[9] S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel, “Differ-
ential assertion checking,” in FSE. ACM, 2013, pp. 345–355.

[10] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in USENIX. USENIX
Association, 2016, pp. 53–70.

[11] M. Kiefer, V. Klebanov, and M. Ulbrich, “Relational program reasoning
using compiler IR,” in VSTTE, ser. LNCS, vol. 9971. Springer, 2016,
pp. 149–165.

[12] B. Beckert, T. Bingmann, M. Kiefer, P. Sanders, M. Ulbrich, and
A. Weigl, “Relational Equivalence Proofs Between Imperative and
MapReduce Algorithms,” ser. LNCS, vol. 11294. Springer, 2018, pp.
248–266.

[13] G. Barthe, J. M. Crespo, and C. Kunz, “Relational verification using
product programs,” in FM, ser. LNCS, vol. 6664. Springer, 2011, pp.
200–214.

[14] D. Felsing, S. Grebing, V. Klebanov, P. Rümmer, and M. Ulbrich,
“Automating regression verification,” in ASE. ACM, 2014, pp. 349–360.

[15] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti, “Relational
Verification Through Horn Clause Transformation,” in SAS, ser. LNCS,
vol. 9837, 2016, pp. 147–169.

[16] D. Mordvinov and G. Fedyukovich, “Synchronizing Constrained Horn
Clauses,” in LPAR, ser. EPiC Series in Computing, vol. 46. EasyChair,
2017, pp. 338–355.

[17] R. Shemer, A. Gurfinkel, S. Shoham, and Y. Vizel, “Property directed
self composition,” in CAV, Part I, vol. 11561. Springer, 2019, pp.
161–179.

[18] E. M. Clarke, “Program invariants as fixedpoints,” Computing, vol. 21,
no. 4, pp. 273–294, 1979.

[19] K. R. Apt et al., From logic programming to Prolog. Prentice Hall
London, 1997, vol. 362.

[20] N. Bjørner and M. Janota, “Playing with quantified satisfaction.” LPAR
(short papers), vol. 35, pp. 15–27, 2015.

[21] A. R. Bradley, “SAT-Based Model Checking without Unrolling,” in
VMCAI, ser. LNCS, vol. 6538. Springer, 2011, pp. 70–87.

[22] L. M. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
TACAS, ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

[23] D. Mordvinov and G. Fedyukovich, “Verifying Safety of Functional
Programs with Rosette/Unbound,” CoRR, vol. abs/1704.04558, 2017,
https://github.com/dvvrd/rosette.

[24] O. Strichman and M. Veitsman, “Regression verification for unbalanced
recursive functions,” in FM, ser. LNCS, vol. 9995, 2016, pp. 645–658.

[25] M. Sousa and I. Dillig, “Cartesian Hoare Logic for verifying k-safety
properties,” in PLDI. ACM, 2016, pp. 57–69.

[26] L. Pick, G. Fedyukovich, and A. Gupta, “Exploiting Synchrony and
Symmetry in Relational Verification,” in CAV, Part I, ser. LNCS, vol.
10981. Springer, 2018, pp. 164–182.

ISBN: 978-0-9835678-9-9. Copyright owned jointly by the authors and FMCAD, Inc. 160

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on October 25,2022 at 20:06:46 UTC from IEEE Xplore. Restrictions apply.

