
Estimating the hardness of SAT encodings for
Logical Equivalence Checking of Boolean circuits

Alexander Semenov* Konstantin Chukharev
Egor Tarasov Daniil Chivilikhin

Viktor Kondratiev
ITMO University, St. Petersburg, Russia

alex.a.semenov@itmo.ru

October 5, 2022

Abstract

In this paper we investigate how to estimate the hardness of Boolean
satisfiability (SAT) encodings for the Logical Equivalence Checking prob-
lem (LEC). Meaningful estimates of hardness are important in cases when
a conventional SAT solver cannot solve a SAT instance in a reasonable
time. We show that the hardness of SAT encodings for LEC instances
can be estimated w.r.t. some SAT partitioning. We also demonstrate
the dependence of the accuracy of the resulting estimates on the prob-
abilistic characteristics of a specially defined random variable associated
with the considered partitioning. The paper proposes several methods for
constructing partitionings, which, when used in practice, allow one to es-
timate the hardness of SAT encodings for LEC with good accuracy. In
the experimental part we propose a class of scalable LEC tests that give
extremely complex instances with a relatively small input size 𝑛 of the
considered circuits. For example, for 𝑛 = 40, none of the state-of-the-art
SAT solvers can cope with the considered tests in a reasonable time. How-
ever, these tests can be solved in parallel using the proposed partitioning
methods.

1 Introduction
Boolean circuits are widely used in theoretical computer science [1, 18] as well
as in numerous industrial applications. It would take too much space to list all
the key references regarding the various practical applications of Boolean cir-
cuits. We only note that each hardware implementation of an arbitrary discrete
function (i.e. function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚) can be viewed as some Boolean cir-
cuit, entailing the development of such a colossal industry as Electronic Design
Automation (EDA).

1

ar
X

iv
:2

21
0.

01
48

4v
1

 [
cs

.A
I]

 4
 O

ct
 2

02
2

mailto: alex.a.semenov@itmo.ru

One of the main problems related to Boolean circuits is the logical equiva-
lence checking problem (LEC) [24, 28]. This problem is posed as follows: there
are two circuits 𝑆𝑓 , 𝑆ℎ specifying some functions 𝑓, ℎ : {0, 1}𝑛 → {0, 1}𝑚. The
question is: “Is it true that 𝑓 and ℎ are equal, i.e. point-wise equality 𝑓 ∼= ℎ
holds?”. At the initial stage of development of formal verification methods, Bi-
nary Decision Diagrams (BDD) [9] were used to solve LEC. Works [4, 5] argued
in favor of solving LEC via applying complete SAT solvers based on the CDCL
algorithm [25]; currently, LEC is mainly solved with such algorithms: a good
example is the ABC [8] framework.

SAT solvers work with Boolean formulas in Conjunctive Normal Form
(CNF). There is an algorithm linear in the size of circuits 𝑆𝑓 , 𝑆ℎ that reduces
LEC for these circuits to SAT for a CNF formula using Tseytin transforma-
tions [34].

Unfortunately, SAT for a CNF formula which encodes LEC for 𝑆𝑓 and 𝑆ℎ

can be difficult for state-of-the-art SAT solvers. If we use a sequential solver, in
many cases we cannot even say how much time can be required for solving the
corresponding SAT instance. Prediction of runtime for modern SAT solvers is
very difficult in the general case due to their heavy-tailed behavior [19].

The main goal of this paper is to show that the hardness of a SAT instance
which encodes some LEC problem can be estimated by decomposing this in-
stance into a family of simpler SAT instances. In this context we introduce the
notion of hardness of formula w.r.t. some SAT partitioning. We show that this
hardness measure can be expressed via an expected value of a special random
variable which is associated with a considered SAT partitioning. To estimate
this measure we use the Monte Carlo method. The main issue of this approach
is that the corresponding Monte Carlo estimation can be not accurate enough.
We study the problem how to construct a partitioning of a CNF formula encod-
ing some LEC problem, which gives a hardness estimation of this formula with
high accuracy. We propose two partitioning construction methods which rely on
the structure of considered circuits and justify the good properties of proposed
construction methods in application to extremely hard LEC instances. In par-
ticular, using a computing cluster we solved the LEC instance which turned to
be too hard for sequential SAT solvers which won the SAT Competitions of the
last years.

2 Preliminaries
In this section, we introduce the necessary formal concepts and notation.

2.1 Satisfiability and Boolean circuits
We start from basic concepts related to SAT, the Boolean Satisfiability prob-
lem [7]. In the context of SAT one usually works with a Boolean formula in
CNF.

2

Let 𝐶 be an arbitrary CNF formula and 𝑋 be the set of Boolean variables
occurring in 𝐶. An assignment of variables from 𝑋 is a mapping 𝛼 : 𝑋 → {0, 1}.
The set of all different assignments of variables from 𝑋 is denoted as {0, 1}|𝑋|

and called Boolean hypercube of dimension 𝑛, 𝑛 = |𝑋|.
In the context of SAT, for an arbitrary CNF formula 𝐶 it is required to an-

swer the following question: is it true that 𝐶 is satisfiable? That is, is there
as assignment of variables from 𝑋 for which 𝐶 is evaluated to true? In this
formulation, SAT is NP-complete, and it is NP-hard when one has to detect
the satisfiability of 𝐶 and, in the case of a positive answer, to find some sat-
isfying assignment. Despite the theoretical hardness of SAT, the last 20 years
demonstrate impressive progress in the development of SAT solving algorithms
with a wide spectrum of practical applications in symbolic verification, com-
putational combinatorics, bioinformatics, cryptanalysis, etc. One of the most
striking examples is hardware verification and, in particular, Logical Equiva-
lence Checking (LEC). As it was said above, in LEC one has to answer the
following question: is it true that two Boolean circuits are equivalent?

As in the majority of related articles, we regard a Boolean circuit as some di-
rected acyclic graph. Consequently, we use the following standard graph theory
definitions. A (directed) graph 𝐺 = (𝑉,𝐸) consists of a set of vertices 𝑉 and a
set of (directed) edges 𝐸 ⊆ 𝑉 2. An edge is a pair of connected vertices. An arc
is a directed edge, i.e. an ordered pair of vertices. For each arc (𝑢, 𝑣) ∈ 𝐸, ver-
tex 𝑢 is called a parent of 𝑣, and 𝑣 is called a child of 𝑢. The set of all parents
of a vertex 𝑣 is denoted by 𝑃𝑣. The indegree of a vertex 𝑣 is the number of
parents of 𝑣, and the outdegree is the number of children. A vertex is called an
input if it has no parents, and an output if it has no children. The sets of inputs
and outputs are denoted as 𝑉 𝑖𝑛 ⊂ 𝑉 and 𝑉 𝑜𝑢𝑡 ⊂ 𝑉 respectively. A path is a
sequence of arcs. A vertex 𝑢 is called a predecessor of 𝑣 if there is a path from
𝑢 to 𝑣. A predecessor 𝑢 which is also an input (𝑢 ∈ 𝑉 in) is called an ancestor
of 𝑣. The set of all ancestors of a vertex 𝑣 is denoted by 𝐴𝑣 (ancestor set).

A Boolean circuit with 𝑛 inputs and 𝑚 outputs can be viewed as a natural
way of specifying some discrete function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚. Implying this,
we will denote an arbitrary Boolean circuit defining a discrete function 𝑓 as
𝑆𝑓 = (𝑉,𝐸).

Let 𝑆𝑓 be an arbitrary Boolean circuit. Any vertex 𝑣 ∈ 𝑉 ∖ 𝑉 𝑖𝑛 is called
a gate. Each gate is associated with some logical connective from a predefined
set called a basis (for example it can be {∧,¬}, {∧,∨,¬}, {∧,⊕, 1}, etc.). An
example of a graphical representation of a Boolean circuit with |𝑉 𝑖𝑛| = 3 inputs
and |𝑉 ∖ 𝑉 𝑖𝑛| = 8 gates is shown in Fig. 1.

The set of vertices 𝑉 of a circuit 𝑆𝑓 can be naturally partitioned into subsets
called “layers”, which are defined inductively as follows.

Definition 1 (Circuit layers). Let 𝑉0 = 𝑉 𝑖𝑛 denote the zeroth circuit layer. The
𝑘-th (𝑘 ≥ 1) circuit layer 𝑉𝑘 is defined inductively as the set of all vertices 𝑣
satisfying the following two properties:

1. 𝑣 /∈
⋃︀𝑘−1

𝑗=0 𝑉𝑗;

3

𝑖1 𝑖2 𝑖3

¬ ∧ ⊕

∨ ∧

∧ ∧

⊕

Figure 1: An example Boolean circuit with three inputs (𝑖1, 𝑖2, 𝑖3) and eight
gates

2. 𝑃𝑣 ⊆
⋃︀𝑘−1

𝑗=0 𝑉𝑗.

Definition 2 (Associated functions). With each gate 𝑣 ∈ 𝑉 ∖ 𝑉 𝑖𝑛 let us asso-
ciate a predefined Boolean function 𝑔𝑣 : {0,1}|𝑃𝑣| → {0,1}. The value of 𝑔𝑣 is
uniquely determined by the values of the functions 𝑔𝑤 (𝑤 ∈ 𝑃𝑣) with respect to
the semantics of the logical connective which is associated with gate 𝑣.

Let us fix some order on set 𝑉 𝑖𝑛 and the same order will apply to the bits of
an arbitrary word from {0, 1}𝑛. Thus, each bit of an arbitrary word 𝛼 ∈ {0, 1}𝑛
is uniquely connected with some vertex from 𝑉 𝑖𝑛. Let us say that 𝛼 is an input
word of 𝑆𝑓 .

Definition 3 (Circuit interpretation). Let 𝛼 ∈ {0, 1}𝑛 be an arbitrary in-
put word of the circuit 𝑆𝑓 . Begin traversing the circuit starting from the first
layer 𝑉1. For any 𝑣 ∈ 𝑉1 we suppose that the value of an arbitrary 𝑔𝑤 (𝑤 ∈ 𝑃𝑣,
𝑃𝑣 ⊆ 𝑉 𝑖𝑛) is equal to the corresponding bit of 𝛼 associated with 𝑤. For an ar-
bitrary gate 𝑣 ∈ 𝑉𝑗, 𝑗 > 1, let us calculate the value of 𝑔𝑣 on 𝛼 using known
values of 𝑔𝑤 on this input word for all 𝑤 ∈ 𝑃𝑣. We will also say that this value
of 𝑔𝑣 is induced by 𝛼. Continue the evaluation until the values of functions 𝑔𝑣
are calculated for all gates of circuit 𝑆𝑓 . Let us call the described process the
interpretation of the circuit 𝑆𝑓 on input word 𝛼.

Let 𝑆𝑓 be a Boolean circuit with 𝑛 inputs and 𝑚 outputs. Note that the
interpretation of 𝑆𝑓 specifies a total function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚. The value
of this function on an arbitrary word 𝛼 ∈ {0, 1}𝑛 is a Boolean vector 𝛾 =
(𝛾1, . . . , 𝛾𝑚), where 𝛾𝑘, 𝑘 ∈ {1, . . . ,𝑚}, are the values of functions 𝑔𝑣 induced
by 𝛼 for all 𝑣 ∈ 𝑉 𝑜𝑢𝑡.

Definition 4 (Associated variables). Let us associate with each vertex of circuit
𝑆𝑓 a particular Boolean variable and denote the set of all such variables as 𝑋.
Let 𝑋𝑖𝑛 be the set of Boolean variables associated with the inputs of 𝑆𝑓 ; we will
refer to these variables as to input variables. The variables assigned to gates

4

will be called auxiliary variables. For an arbitrary ̃︀𝑉 ⊆ 𝑉 , let var(̃︀𝑉) denote
the set of Boolean variables assigned to nodes from ̃︀𝑉 . To simplify the notation,
we write var(𝑣) = 𝑥 for a singleton vertex instead of var({𝑣}) = {𝑥}.

Let 𝑣 be an arbitrary gate in 𝑆𝑓 , and let 𝑈𝑣 = var(𝑃𝑣), 𝑢 = var(𝑣). Let 𝑔𝑣
be a Boolean function corresponding to the gate 𝑣, and let 𝐹 (𝑔𝑣) be an arbitrary
Boolean formula over 𝑈𝑣 (for example, a canonical CNF), which defines 𝑔𝑣. For
a gate 𝑣, we denote by 𝐶𝑣 the CNF representation of formula 𝐹 (𝑔𝑣) ≡ 𝑢.

Definition 5 (Template CNF formula). Let 𝑆𝑓 be some Boolean circuit which
specifies the function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚. We will refer to the CNF formula
𝐶𝑓 =

⋀︀
𝑣∈𝑉 ∖𝑉 𝑖𝑛 𝐶𝑣 as to the template CNF formula for function 𝑓 [31].

Note that 𝐶𝑓 is in fact the CNF formula which can be obtained from 𝑆𝑓 by
applying Tseytin transformations [34].

Recall the following notation: 𝑥𝜎 =
{︀ 𝑥, if 𝜎=1

¬𝑥, if 𝜎=0 . Let Φ be an arbitrary
Boolean formula over the variables 𝑋. Denote by Φ|𝑥=𝜎 the formula obtained
by substituting 𝑥 with 𝜎 in Φ [10]. It is clear that the formulas 𝑥𝜎 ∧ Φ and
Φ|𝑥=𝜎 are equisatisfiable. Thus, when working with the formula 𝑥𝜎 ∧Φ, we can
regard the unit clause 𝑥𝜎 as the value 𝜎 of the variable 𝑥 in the formula Φ.

Definition 6 (Cone). Let 𝑣 be an arbitrary gate in 𝑆𝑓 , and 𝑄𝑣 be the set of all
predecessors of 𝑣. The set 𝑄𝑣 ∪ {𝑣} is called the cone of 𝑣.

The following fact has been repeatedly established in the literature, see
e.g. [3, 15]. It uses a simple Boolean constraint propagation mechanism known
as the Unit Propagation rule (UP) [14, 25].

Lemma 1. Let 𝐶𝑓 be the template CNF formula for a circuit 𝑆𝑓 . Let 𝑣 be an
arbitrary gate of 𝑆𝑓 , the set 𝑄𝑣 be the cone of 𝑣, 𝐴𝑣, 𝐴𝑣 ⊆ 𝑄𝑣 be the ancestor
set of 𝑣, and 𝑋𝑣 = {𝑥𝑣,1, . . . , 𝑥𝑣,𝑟} = var(𝐴𝑣) be the set of variables associated
with 𝐴𝑣 (𝑋𝑣 ⊆ 𝑋𝑖𝑛). Then, for each (𝛼1, . . . , 𝛼𝑟) ∈ {0, 1}|𝑋𝑣|, application of
the UP rule to the CNF formula 𝑥𝛼1

𝑣,1∧ . . .∧𝑥𝛼𝑟
𝑣,𝑟∧𝐶𝑓 derives (in the form of unit

clauses) the values of all variables from 𝑣𝑎𝑟(𝑄𝑣)∖𝑋𝑣. Moreover, for the variable
𝑢 = 𝑣𝑎𝑟(𝑣), the derived value is equal to the value of function 𝑔𝑣 induced by any
input word 𝛼 ∈ {0, 1}𝑛 of 𝑆𝑓 which contains (w.r.t. corresponding variables)
the sub-vector (𝛼1, . . . , 𝛼𝑟). Note that the resulting set of unit clauses does not
contain conflicting literals.

Proof. The proof of this lemma uses the traversal of 𝑆𝑓 by layers and the prop-
erties of Tseytin transformations.

Corollary 1 (of Lemma 1). Application of UP to the CNF formula 𝑥𝛼1
1 ∧ . . .∧

𝑥𝛼𝑛
𝑛 ∧𝐶𝑓 for any (𝛼1, . . . , 𝛼𝑛) ∈ {0, 1}|𝑋𝑖𝑛| derives (in the form of unit clauses)

the values of all variables associated with gates from 𝑉 ∖ 𝑉 𝑖𝑛, including the
variables from 𝑣𝑎𝑟(𝑉 𝑜𝑢𝑡) = {𝑦1, . . . , 𝑦𝑚}: 𝑦1 = 𝛾1, . . . , 𝑦𝑚 = 𝛾𝑚, 𝑓(𝛼) = 𝛾,
𝛼 = (𝛼1, . . . , 𝛼𝑛), 𝛾 = (𝛾1, . . . , 𝛾𝑚).

Note that from Lemma 1 and Corollary 1 it follows that the process of
interpretation of circuit 𝑆𝑓 on an arbitrary input word (𝛼1, . . . , 𝛼𝑛) is modelled
by consecutive application of the UP rule to the CNF formula 𝑥𝛼1

1 ∧. . .∧𝑥𝛼𝑛
𝑛 ∧𝐶𝑓 .

5

2.2 SAT partitioning
As mentioned above, SAT is NP-hard, so some instances of SAT can be very
difficult for conventional solvers. There are several approaches to parallelizing
SAT solving [21], the main ones being the portfolio approach (e.g. [2]) and the
partitioning approach (e.g. Cube and Conquer [20]). In this paper, we follow
the partitioning approach.

Let us consider an arbitrary CNF formula 𝐶 over the set of Boolean vari-
ables 𝑋 and set Π = {𝐺1, . . . , 𝐺𝑠}, where 𝐺𝑖 (𝑖 ∈ {1, . . . , 𝑠}) are some Boolean
formulas. Let us say that the set Π yields a SAT partitioning of 𝐶 if the follow-
ing conditions hold:

• formulas 𝐶 and 𝐶 ∧ (𝐺1 ∨ · · · ∨𝐺𝑠) are equisatisfiable;

• for each 𝑖, 𝑗 ∈ {1, . . . , 𝑠}, 𝑖 ̸= 𝑗, formula 𝐶 ∧𝐺𝑖 ∧𝐺𝑗 is unsatisfiable.

For some set of variables 𝐵 ⊆ 𝑋, 𝐵 = {𝑥𝑘1
, . . . , 𝑥𝑘𝑟

}, each formula
𝑥𝛼1

𝑘1
, . . . 𝑥𝛼𝑟

𝑘𝑟
for an arbitrary (𝛼1, . . . , 𝛼𝑟) ∈ {0, 1}𝑟 is called a cube (over 𝑋).

For an arbitrary CNF formula 𝐶 over the set of variables 𝑋, a simple example
of a partitioning is generated by set Π = {𝐺1, . . . , 𝐺2𝑟}, which consists of all
possible cubes over an arbitrary set 𝐵, |𝐵| = 𝑟.

In the following, we will use the term partitioning for both the set Π and for
the set of CNF formulas generated by Π.

2.3 Background from probability theory
Below we will use some probabilistic reasoning to estimate the hardness of SAT
encodings for LEC instances. Let us recall some relevant basic facts from prob-
ability theory.

Let 𝜉 be some random variable with finite spectrum (i.e. set of its values)
{𝜉1, . . . , 𝜉𝑀} and probability distribution 𝑃𝜉 = {𝑝1, . . . , 𝑝𝑀}. In the following,
use assume that 0 < 𝜉𝑖 < ∞ for every 𝑖 ∈ {1, . . . ,𝑀}. Then, the expected value
(expectation) of 𝜉 is defined as 𝐸[𝜉] =

∑︀𝑀
𝑖=1 𝜉𝑖𝑝𝑖. In many practical applications,

knowledge of 𝐸[𝜉] turns out to be very important. However, it is often impossible
to accurately calculate the exact value of 𝐸[𝜉] in a reasonable amount of time.
In such cases, one can instead estimate 𝐸[𝜉] with some predetermined accuracy
𝜀. The corresponding algorithms use random sampling and traditionally refer
to the Monte Carlo method [26].

More precisely, let 𝜉1, . . . , 𝜉𝑁 be independent observations of the random
variable 𝜉. Then, Chebyshev’s inequality [16] implies:

Pr

⎧⎨⎩(1−𝜀)𝐸[𝜉] ≤ 1

𝑁

𝑁∑︁
𝑗=1

𝜉𝑗 ≤ (1+𝜀)𝐸[𝜉]

⎫⎬⎭≥1 − 𝑉 𝑎𝑟(𝜉)

𝜀2𝑁𝐸2[𝜉]
, (1)

where 𝑉 𝑎𝑟(𝜉) denotes the variance of the random variable 𝜉. It follows from (1)
that for finite 𝐸[𝜉] and 𝑉 𝑎𝑟(𝜉), the expectation 𝐸[𝜉] can be approximated (in
the sense of (1)) by the value 𝜉 = 1

𝑁

∑︀𝑁
𝑗=1 𝜉𝑗 with any tolerance 𝜀 given in

advance by increasing the number of observations 𝑁 .

6

𝑛 inputs

𝑆𝑓 : {0, 1}𝑛 → {0, 1}𝑚 𝑆ℎ : {0, 1}𝑛 → {0, 1}𝑚

2𝑚 outputs

Figure 2: Circuit 𝑆𝑓△ℎ constructed by using the same set of inputs for two
circuits 𝑆𝑓 and 𝑆ℎ

The following inequality is less accurate than (1) in the general case, but it
is often more convenient to use for 𝐸[𝜉] estimation:

Pr

⎧⎨⎩
⃒⃒⃒⃒
⃒⃒𝐸[𝜉] − 1

𝑁

𝑁∑︁
𝑗=1

𝜉𝑗

⃒⃒⃒⃒
⃒⃒ ≤ 𝜀

⎫⎬⎭ ≥ 1 − 𝑉 𝑎𝑟(𝜉)

𝜀2 𝑁
. (2)

If 𝜉 is a Bernoulli variable, i.e. takes values in {0, 1}, then instead of (2) one
can use the following variant of Chernoff bound (see e.g. [29]):

Pr

⎧⎨⎩
⃒⃒⃒⃒
⃒⃒𝐸[𝜉] − 1

𝑁

𝑁∑︁
𝑗=1

𝜉𝑗

⃒⃒⃒⃒
⃒⃒ ≤ 𝜀

⎫⎬⎭ ≥ 1 − 2 𝑒−
𝜀2 𝑁

4 . (3)

The proof of (3) can be found in [22].

3 Estimating the hardness of SAT encodings of
LEC instances using SAT partitioning

Let us return to LEC. Consider two Boolean circuits 𝑆𝑓 , 𝑆ℎ defining functions
𝑓, ℎ : {0, 1}𝑛 → {0, 1}𝑚. Let us construct a circuit which will be denoted by
𝑆𝑓△ℎ. This circuit is obtained from 𝑆𝑓 and 𝑆ℎ by “gluing” together the input
vertices (see Fig. 2). Thus, this circuit has the same 𝑉 𝑖𝑛 as 𝑆𝑓 and 𝑆ℎ, and
defines the function 𝑓△ ℎ : {0, 1}𝑛 → {0, 1}2𝑚 .

Denote 𝑉 𝑜𝑢𝑡
𝑓 and 𝑉 𝑜𝑢𝑡

ℎ the output sets of circuits 𝑆𝑓 , 𝑆ℎ, and denote 𝑌𝑓 =

{𝑦𝑓1 , . . . , 𝑦𝑓𝑚} and 𝑌ℎ = {𝑦ℎ1 , . . . , 𝑦ℎ𝑚} the sets of variables assigned to vertices
from 𝑉 𝑜𝑢𝑡

𝑓 and 𝑉 𝑜𝑢𝑡
ℎ and ordered according to the semantics of the circuits.

Consider the formula: (︁
𝑦𝑓1 ⊕ 𝑦ℎ1

)︁
∨ · · · ∨

(︀
𝑦𝑓𝑚 ⊕ 𝑦ℎ𝑚

)︀
. (4)

7

Formula (4) defines a Boolean function 𝜇 : {0, 1}2𝑚 → {0, 1} called a miter.
Let us apply Tseytin transfomation (in a standard manner) to formula (4) and
denote the resulting CNF formula as 𝐶(𝜇). It follows directly from Lemma 1
that circuits 𝑆𝑓 and 𝑆ℎ are equivalent if and only if the following CNF formula
is unsatisfiable:

𝐶𝑓△ℎ ∧ 𝐶(𝜇), (5)

where 𝐶𝑓△ℎ is the template CNF formula for function 𝑓△ ℎ. Consider below
another corollary of Lemma 1.

Corollary 2. For two arbitrary functions 𝑓, ℎ : {0, 1}𝑛 → {0, 1}𝑚 specified by
circuits 𝑆𝑓 , 𝑆ℎ, the number of assignments satisfying template CNF formulas
𝐶𝑓 , 𝐶ℎ, and 𝐶𝑓△ℎ, is 2𝑛.

A rather interesting observation is the following. Modern CDCL-based SAT
solvers, receiving a CNF formula of the form 𝐶𝑓 or 𝐶𝑓△ℎ as input, very quickly
(usually within a fraction of a second) generate some satisfying assignment cor-
responding to some input/output pair. At the same time, CNF formulas (5) can
be very hard. It is worth to note that formulas 𝐶𝑓△ℎ and (5) differ from each
other only by clauses corresponding to the miter (their fraction in (5) usually
is extremely small).

Everywhere below, we assume that 𝒪 is an arbitrary complete SAT solver.
If formula (5) is difficult for 𝒪, then often we cannot even say how much time
𝒪 will take to solve this SAT instance. The difficulty of this kind of assessment
is due to an effect that is known as the heavy-tailed behavior of CDCL-based
SAT solvers [19]. However, in some cases, we can estimate the overall hardness
of a SAT instance quite efficiently and accurately by estimating the hardness of
its SAT partitioning. Let us note that the following definition is inspired by the
decomposition hardness notion [30].

Definition 7 (Hardness w.r.t. SAT partitioning). Let 𝐶 be an arbitrary CNF
formula, Π be some partitioning of 𝐶, and 𝒪 be some complete SAT solver. The
total runtime of solver 𝒪 on instances 𝐺∧𝐶 for all formulas 𝐺 ∈ Π is called the
hardness of 𝐶 w.r.t solver 𝒪 and partitioning Π, and is denoted as 𝑇𝒪(𝐶,Π).

Below we show that 𝑇𝒪(𝐶,Π) can be estimated using a probabilistic Monte
Carlo algorithm. Let us describe the general scheme for constructing such esti-
mates.

Let 𝐶 is an arbitrary SAT instance and Π = {𝐺1, . . . , 𝐺𝑠} be some parti-
tioning of 𝐶. If 𝑠 is large, then it is possible to estimate the time needed to
solve 𝐶 w.r.t. Π through an estimate of the solution time of 𝑁 SAT instances
𝐺𝑘 ∧ 𝐶, 𝑘 ∈ {1, . . . , 𝑁} chosen from Π according to some distribution. As a
rule, at the initial stage we fix a uniform distribution on Π. Let us introduce
a random variable 𝜉Π whose values are equal to the running time of the SAT
solver 𝒪 on formulas 𝐺𝑗 ∧ 𝐶, 𝑗 ∈ {1, . . . , 𝑠}. Let 𝑆𝑝𝑒𝑐(𝜉Π) = {𝜉1, . . . , 𝜉𝑄} be
the spectrum of 𝜉Π, and each value 𝜉𝑟, 𝑟 ∈ {1, . . . , 𝑄}, is assigned a probability

8

𝑝𝑟 = #𝜉𝑟
𝑠 , where #𝜉𝑟 denotes the number of such 𝐺𝑗 , 𝑗 ∈ {1, . . . , 𝑠}, that the

running time of 𝒪 on the formula 𝐺𝑗 ∧ 𝐶 is 𝜉𝑟. Thus, 𝜉Π has the distribution
law 𝑃 (𝜉Π) = {𝑝1, . . . , 𝑝𝑄}. Recall again that 𝒪 is complete SAT solver, so 𝜉Π
has finite spectrum, expected value, and variance. The following fact is true.

Theorem 1. The hardness of SAT instance 𝐶 w.r.t. solver 𝒪 and SAT parti-
tioning Π is 𝑇𝒪(𝐶,Π) = 𝑠𝐸[𝜉Π].

Proof.

𝑇𝒪(𝐶,Π) =

𝑄∑︁
𝑟=1

𝜉𝑟 #𝜉𝑟 = 𝑠

𝑄∑︁
𝑟=1

𝜉𝑟
#𝜉𝑟
𝑠

= 𝑠𝐸[𝜉Π].

The running time of 𝒪 can be measured in any convenient units, for example,
in seconds, the number of times the Unit Propagation rule is applied, or the
number of conflicts generated by 𝒪.

To estimate 𝐸[𝜉Π], one can use the Monte Carlo method and specifically the
formula (1). Despite the formal possibility of achieving any estimation accuracy
by increasing the number of observations 𝑁 of the value 𝜉Π, in many practical
cases, the obtained estimates may be inaccurate due to high variance 𝑉 𝑎𝑟(𝜉Π),
which, in turn, is a consequence of the effect of heavy-tailed behavior of CDCL
SAT solvers. Thus, arises the problem of constructing such partitionings for
which 𝑉 𝑎𝑟(𝜉Π) would not exceed some reasonable limit: for example, the stan-
dard deviation 𝜎 = +

√︀
𝑉 𝑎𝑟(𝜉Π) should not exceed 𝐸[𝜉Π]. Below we describe

two general SAT partitioning constructions for which 𝜎 has relatively small
values on the LEC instances discussed below. The ideas underlying such con-
structions are based on the properties of CNF formulas 𝐶𝑓 , 𝐶ℎ, 𝐶𝑓△ℎ, and
𝐶𝑓△ℎ ∧ 𝐶(𝜇).

Consider LEC for circuits 𝑆𝑓 , 𝑆ℎ (𝑓, ℎ : {0, 1}𝑛 → {0, 1}𝑚). Let us once again
focus on the fact that the CNF formula 𝐶𝑓△ℎ has 2𝑛 satisfying assignments,
while the CNF formula 𝐶𝑓△ℎ∧𝐶(𝜇) has none if 𝑆𝑓

∼= 𝑆ℎ. Let Π = {𝐺1, . . . , 𝐺𝑠}
be an arbitrary SAT partitioning of 𝐶𝑓△ℎ. Denote by #(𝐺 ∧ 𝐶) the number of
satisfying assignments of the formula 𝐺 ∧ 𝐶 for an arbitrary 𝐺 ∈ Π. It is easy
to deduce the following fact from the general properties of the SAT partitioning
and Lemma 1.

Proposition 1. Let Π be an arbitrary SAT partitioning of 𝐶𝑓△ℎ. Then, the
following equation holds: ∑︁

𝐺∈Π

#(𝐺 ∧ 𝐶𝑓△ℎ) = 2𝑛.

Thus, an arbitrary formula 𝐺∧𝐶𝑓△ℎ has #(𝐺∧𝐶𝑓△ℎ) satisfying assignments
(and this number can be significantly larger than zero), but at the same time the
formula 𝐺 ∧𝐶𝑓△ℎ ∧𝐶(𝜇) is unsatisfiable if 𝑆𝑓 and 𝑆ℎ are equivalent. Allowing
a somewhat loose interpretation, we can say that by proving the unsatisfiability

9

of 𝐺 ∧ 𝐶𝑓△ℎ ∧ 𝐶(𝜇), we block #(𝐺 ∧ 𝐶𝑓△ℎ) satisfying assignments of formula
𝐺∧𝐶𝑓△ℎ. In total, when solving all problems in the SAT partitioning, we need
to block all 2𝑛 satisfying assignments of 𝐺 ∧ 𝐶𝑓△ℎ (the sets of assignments of
different formulas 𝐺 ∧ 𝐶𝑓△ℎ are disjoint).

Taking into account all said above, there arises an attractive idea to link the
hardness of formulas 𝐺∧𝐶𝑓△ℎ∧𝐶(𝜇) with the number of satisfying assignments
of corresponding formulas 𝐺 ∧ 𝐶𝑓△ℎ. Looking ahead, let us note that our com-
putational experiments demonstrate this exact connection: the more satisfying
assignments the formula 𝐺∧𝐶𝑓△ℎ has, the harder the formula 𝐺∧𝐶𝑓△ℎ ∧𝐶(𝜇)
is. Thus, if we want all problems 𝐺∧𝐶𝑓△ℎ ∧𝐶(𝜇) in the SAT partitioning Π to
have approximately equal hardness (which would correspond to a relatively low
variance 𝑉 𝑎𝑟(𝜉Π)), we must ensure that all formulas 𝐺∧𝐶𝑓△ℎ have an approx-
imately equal number of satisfying assignments. In the following, we describe
two types of SAT partitionings that satisfy these requirements.

Construction 1. Denote as ̃︀𝐶 the CNF formula 𝐶𝑓△ℎ or CNF formula 𝐶𝑓△ℎ∧
𝐶(𝜇). Consider the set of variables 𝑋𝑖𝑛 = {𝑥1, . . . , 𝑥𝑛} assigned to the inputs
of the circuit 𝑆𝑓△ℎ. Let us divide (generally speaking, in an arbitrary way)
the set 𝑋𝑖𝑛 into disjoint subsets of variables with 𝑘, 𝑘 ≥ 1 variables in each
group. For simplicity, we will assume that 𝑛 is divisible by 𝑘. We have sets
𝑋1, . . . , 𝑋𝑛/𝑘. With each set 𝑋𝑗, 𝑗 ∈ {1, . . . , 𝑛/𝑘} we associate an arbitrary
non-constant Boolean function 𝜆𝑗

1, 𝜆𝑗
1 : {0, 1}|𝑋𝑗 | → {0, 1}, and the function

𝜆𝑗
2 = ¬𝜆𝑗

1. Let 𝜑𝑗
1, 𝜑

𝑗
2 be arbitrary formulas defining the functions 𝜆𝑗

1 and 𝜆𝑗
2.

Let the formula 𝜑1 ∧ · · · ∧ 𝜑𝑛/𝑘 be an arbitrary formula in which 𝜑𝑗 denotes
either the occurrence of 𝜑𝑗

1 or the occurrence of 𝜑𝑗
2. It is easy to see that the

following fact holds.

Proposition 2. The set of all 2𝑛/𝑘 possible formulas 𝜑1 ∧ · · · ∧𝜑𝑛/𝑘 ∧ ̃︀𝐶 forms
a SAT partitioning of ̃︀𝐶.

Note that if all functions 𝜆𝑗
1, 𝜆

𝑗
2 are balanced (take values 0 and 1 on an equal

number of sets of values of variables from 𝑋𝑗), then for any set 𝜑1, . . . , 𝜑𝑛/𝑘 the
formula 𝜑1 ∧ · · · ∧ 𝜑𝑛/𝑘 ∧ 𝐶𝑓△ℎ has 2(1−1/𝑘)/𝑛 satisfying assignments. For ex-
ample, let us suppose that 𝑛 is even and consider the following case: 𝑋1 =
{𝑥1, 𝑥2}, 𝑋2 = {𝑥3, 𝑥4}, . . . , 𝑋𝑛/2 = {𝑥𝑛−1, 𝑥𝑛}. We choose the functions
𝜆𝑗
1(𝑢, 𝑣) = (𝑢⊕𝑣), 𝜆𝑗

2(𝑢, 𝑣) = (𝑢 ≡ 𝑣). Then, each formula 𝜑1∧· · ·∧𝜑𝑛/2∧𝐶𝑓△ℎ

has 2𝑛/2 satisfying assignments.
The second class of SAT partitionings which gives good results on LEC

instances uses specially constructed cubes over subsets 𝐵 ⊂ 𝑋 ∖𝑋𝑖𝑛.

Construction 2. Let us start again with LEC for two circuits 𝑆𝑓 , 𝑆ℎ and con-
sider CNF formulas 𝐶𝑓 , 𝐶ℎ, 𝐶𝑓△ℎ, 𝐶𝑓△ℎ ∧𝐶(𝜇). Let 𝑋𝑓 , 𝑋ℎ be the sets of vari-
ables occurring in formulas 𝐶𝑓 , 𝐶ℎ accordingly. Consider the following sets:
𝐵𝑓 ⊂ 𝑋𝑓 ∖ 𝑋𝑖𝑛, 𝐵ℎ ⊂ 𝑋ℎ ∖ 𝑋𝑖𝑛, �̃� = 𝐵𝑓 ∪ 𝐵ℎ = {�̃�1, . . . , �̃�𝑠} (we assume
that |�̃�| = 𝑠). Obviously, the set of cubes Π = {�̃�𝛼1

1 ∧ · · · ∧ �̃�𝛼𝑠
𝑠 }𝛼∈{0,1}|�̃�| ,

𝛼 = (𝛼1, . . . , 𝛼𝑠) yields a SAT partitioning of formulas 𝐶𝑓△ℎ and 𝐶𝑓△ℎ∧𝐶(𝜇).

10

Our next task is to learn how to build sets �̃� (following [30] we will refer to
such a set as to a decomposition set) that would provide acceptable hardness
w.r.t. Π for computationally hard LEC instances. Our approach to constructing
sets �̃� is based on the concept of a statistically balanced variable.

Below we consider the circuit 𝑆𝑓 , implying that the results obtained are
also applicable to 𝑆ℎ and 𝑆𝑓△ℎ. Keeping in mind all notions introduced above,
we define a uniform distribution on {0, 1}𝑛, and for an arbitrary 𝑣 ∈ 𝑉 ∖ 𝑉 𝑖𝑛

consider the events 𝑔𝑣 = 0 and 𝑔𝑣 = 1. Denote by Pr{𝑔𝑣 = 0} and Pr{𝑔𝑣 = 1}
the probabilities of these events.

Definition 8 (Balanced gate). Let 𝑣 ∈ 𝑉 ∖ 𝑉 𝑖𝑛 be arbitrary gate. We call
the gate 𝑣 and the corresponding variable 𝑣𝑎𝑟(𝑣) balanced if Pr{𝑔𝑣 = 0} =
Pr{𝑔𝑣 = 1} = 1/2.

The balance of an arbitrary gate 𝑣 ∈ 𝑉 ∖𝑉 𝑖𝑛 can be estimated efficiently us-
ing Chernoff bound (3). Indeed, let 𝑝𝑣 = Pr{𝑔𝑣 = 1}, then 𝑣 is associated with a
Bernoulli random variable 𝜉𝑣, which takes the value 1 if 𝑔𝑣 on the random input
𝛼 ∈ {0, 1}𝑛 takes the value 1. Since 𝐸[𝜉𝑣] = 𝑝𝑣, then for any fixed 𝜀, 𝛿 ∈ (0, 1)
we can construct an (𝜀, 𝛿)-approximation of 𝑝𝑣 using some sample of random
input words of 𝑆𝑓 . Recall (see e.g. [22]) that an (𝜀, 𝛿)-approximation of some
parameter 𝜈 is some observable quantity 𝜈 such that Pr{|𝜈 − 𝜈| ≤ 𝜀} ≥ 1 − 𝛿.
Then it follows from (3) that for any fixed 𝜀, 𝛿 ∈ (0, 1) to obtain the (𝜀, 𝛿)-
approximation of 𝑝𝑣, we only need to make 𝑁 ≥

⌈︁
4 ln(2/𝛿)

𝜀2

⌉︁
independent ob-

servations 𝜉1, . . . , 𝜉𝑁 of random variable 𝜉𝑣, and compute the value 1
𝑁

∑︀𝑁
𝑗=1 𝜉𝑗 .

This can be done efficiently. For example, for 𝜀 = 0.05 and 𝛿 = 0.01, the value
1
𝑁

∑︀𝑁
𝑗=1 𝜉𝑗 gives the required approximation for any 𝑁 ≥ 8478.

4 Experiments

4.1 Considered tests
In the role of 𝑓 and ℎ we considered functions defined by various algorithms
that sort 𝑘 arbitrary natural numbers represented by bit vectors of length 𝑙.
Thus, we considered 𝑓, ℎ : {0, 1}𝑛 → {0, 1}𝑛, where 𝑛 = 𝑘 𝑙. More specifically,
three sorting algorithms were used: Bubble Sorting, Selection Sorting [11] and
Pancake Sorting [17]. The functions 𝑓, ℎ corresponding to these algorithms were
specified using And-Inverter Graphs. We applied ABC [8] to build a FRAIG
(Functionally Reduced And-Inverter Graph) [27] for each considered circuit.
The resulting circuits were used to construct the formulas 𝐶𝑓 , 𝐶ℎ, 𝐶𝑓△ℎ, 𝐶𝑓△ℎ∧
𝐶(𝜇). The corresponding tests are denoted as follows: BvP𝑘,𝑙 for Bubble vs.
Pancake; BvS𝑘,𝑙 for Bubble vs. Selection; and PvS𝑘,𝑙 for Pancake vs. Selection.
It should be noted that the resulting test classes scale very well and give complex
instances even for relatively small input lengths. So, for example, the PvS10,4
test instance is beyond the power of any of the conventional state-of-the-art
SAT solvers. However, as we show below, they can be solved on a computing
cluster in reasonable time using the partitionings described above.

11

4.2 Experimental setup and implementation details
In computational experiments, we used SAT solvers that ranked best in SAT
competition and SAT Race of recent years: Kissat [6], CaDiCaL [6], and
MalpleLCMDistChronoBT-DL [23]. To implement the SAT partitioning strate-
gies described above, an MPI application was written in Python. This program
was run on a computing cluster “Academician V.M. Matrosov”1, each comput-
ing node of which is equipped with two 18-core Intel Xeon E5-2695 v4 Broadwell
processors with 128 GB RAM (thus, 36 cores per one node were harnessed).
When constructing the Monte Carlo estimates, random samples of 10000 were
used. Up to ten computing nodes (360 cores in total) were used in the experi-
ments.

We note here separately that apart from the solution time in seconds, we
also measured the number of conflicts generated during SAT solving, since the
number of conflicts can be considered as an estimate of the size of the search
tree that the SAT solver explores when solving a specific instance. Indeed, the
operation of the DPLL algorithm [12, 13] corresponds to an ordinary binary
tree, each branch of which, for an unsatisfiable test, ends in a conflict. In the
case of CDCL, due to periodic restarts, instead of a tree, we are dealing with a
forest. The number of paths in such a forest, in fact, can be considered as the
complexity of a specific unsatisfiability proof that the SAT solver builds for the
instance in question.

4.3 Main experimental results
For each series of tests BvP, BvS, and PvS, we generated and solved families
of LEC instances of increasing complexity, corresponding to the following pa-
rameters: 𝑘 ∈ {7, 8, 9, 10}, 𝑙 = 4. Table 1 shows the time used to solve these
instances on one cluster one using one thread. We only included hard instances
that were solved in more than three hours. The notation >3d means that the
corresponding instance was not solved in three days and the computation was
interrupted. Also, since the Maple solver, if interrupted, does not output the
number of generated conflicts, the corresponding data is omitted. In the next
series of experiments, SAT partitionings were built in accordance with Con-
struction 1 and Construction 2.

In the case of Construction 1, we used a partitioning of the set 𝑋𝑖𝑛 into
disjoint pairs, triples, and quadruples of variables. Function 𝜆𝑗

1 used in Con-
struction 1 was selected experimentally as follows (𝜆𝑗

2 = ¬𝜆𝑗
1 in all cases):

• 2-XOR: for pairs, function 𝜆𝑗
1, 𝑗 ∈ {1, . . . , 𝑛/2} was defined by formula

𝜑𝑗
1 = (𝑥𝑗

1 ⊕ 𝑥𝑗
2);

• 3-MAJ: for triples, function 𝜆𝑗
1, 𝑗 ∈ {1, . . . , 𝑛/3} was defined by formula

𝜑𝑗
1 = majority(𝑥𝑗

1, 𝑥
𝑗
2, 𝑥

𝑗
3), where majority(𝑎, 𝑏, 𝑐) = 𝑎 ∧ 𝑏 ∨ 𝑎 ∧ 𝑐 ∨ 𝑏 ∧ 𝑐;

1Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru

12

http://hpc.icc.ru

Table 1: Time (in seconds) and number of conflicts used by sequential SAT
solvers on considered instances

Kissat Cadical Maple
Instance Time Confl. Time Confl. Time Confl.

𝐵𝑣𝑃9,4 11 316 9 · 107 25 710 9 · 107 86 389 18 · 107

𝐵𝑣𝑃10,4 154 410 62 · 107 246 294 47 · 107 >3d —
𝐵𝑣𝑆9,4 3 054 27 · 106 5 478 28 · 106 8 564 31 · 106

𝐵𝑣𝑆10,4 14 272 97 · 106 36 048 109 · 106 57 964 130 · 106

𝑃𝑣𝑆9,4 64 437 28 · 107 108 025 26 · 107 >3d —
𝑃𝑣𝑆10,4 >3d 73 · 107 >3d 40 · 107 >3d —

Table 2: Experimental results for solving decompositions of LEC instances
BvP9,4, BvP10,4, PvS9,4

Instance Dec.
type

Dec.
size

Sample
size Solver Avg ± sd

time, s
Avg ± sd

confl.
Wall

time, s

BvP9,4 2-XOR 262 144 10 000 Cadical 19 ± 4 190 · 103 ± 34 · 103 —
10 000 Kissat 21 ± 5 259 · 103 ± 57 · 103 —
10 000 Maple 114 ± 19 411 · 103 ± 52 · 103 —

3-MAJ 4 096 4 096 Cadical 355 ± 109 2 218 · 103 ± 542 · 103 8 087
4 096 Kissat 276 ± 76 2 808 · 103 ± 709 · 103 6 286
4 096 Maple 797 ± 216 2 592 · 103 ± 635 · 103 18 132

4-BENT 512 512 Cadical 2 214 ± 1 149 10 · 106 ± 5 · 106 6 299
512 Kissat 1 168 ± 447 12 · 106 ± 5 · 106 3 323
512 Maple 4 273 ± 1 923 11 · 106 ± 5 · 106 12 153

4+4 256 256 Cadical 1 358 ± 540 9 · 106 ± 3 · 106 1 931
256 Kissat 884 ± 323 11 · 106 ± 4 · 106 1 258
256 Maple 2 286 ± 836 9 · 106 ± 3 · 106 3 252

BvP10,4 3-MAJ 16 384 10 000 Cadical 1 752 ± 886 7 · 106 ± 3 · 106 —
10 000 Kissat 1 072 ± 476 9 · 106 ± 4 · 106 —

4-BENT 1 024 1 024 Cadical 22 397 ± 15 010 63 · 106 ± 30 · 106 127 415
1 024 Kissat 10 472 ± 5 667 77 · 106 ± 35 · 106 59 571

4+4 256 256 Cadical 45 494 ± 12 845 102 · 106 ± 23 · 106 64 703
256 Kissat 18 155 ± 6 451 124 · 106 ± 37 · 106 25 821

PvS9,4 3-MAJ 4 096 4 096 Cadical 941 ± 317 4 · 106 ± 1 · 106 21 422
4 096 Kissat 766 ± 229 6 · 106 ± 2 · 106 17 443

4-BENT 512 512 Cadical 6 491 ± 3 512 20 · 106 ± 10 · 106 18 462
512 Kissat 3 831 ± 1 641 27 · 106 ± 10 · 106 10 898

6+6 4 096 4 096 Cadical 421 ± 492 2 · 106 ± 2 · 106 9 588
4096 Kissat 390 ± 465 4 · 106 ± 4 · 106 8 869

• 4-BENT: for quadruples, 𝜆𝑗
1, 𝑗 ∈ {1, . . . , 𝑛/4} was defined by the bent

function [33] of four variables according to the formula 𝜑𝑗
1 = 𝑥𝑗

1∧𝑥𝑗
3⊕𝑥𝑗

2∧
𝑥𝑗
4.

Note that partitioning into pairs produces a large number of subproblems, which,
although simple, result in much higher estimates of the total solving time than
for triples and quadruples.

In Table 2, columns Total subprobs and Solved subprobs contain information
about the total number of subproblems in the SAT partitioning (column Decom-

13

position Type) and the number of subproblems solved in the experiment using
five nodes of a computing cluster (180 cores). If the values in these columns are
equal, then it means that all subproblems from the corresponding SAT parti-
tioning have been solved. In these cases we compute the exact value of 𝐸[𝜉Π]
and the standard deviation of this value, both in seconds and in the number
of conflicts. Otherwise, if the number of solved subproblems is smaller than
the total number of subproblems, then we present statistical estimates of these
values, calculated using the specified sample size. The column Wall clock time
shows the time used to solve the corresponding partitioning: it corresponds to
the time the user would need to wait in order to solve the LEC instance using
the said partitioning. If the number of solved subproblems (i.e. the sample size)
is smaller than the total number of subproblems, this value is omitted.

In the experiments for Construction 2, we used cubes built from variables
corresponding to balanced gates (we refer to such variables and cubes as to
balanced ones). More precisely, for each circuit 𝑆𝑓 and 𝑆ℎ, the balance of each
gate was calculated in the manner described above: in fact we constructed
(using Chernoff bound) (𝜀, 𝛿) approximations of probability Pr{𝑔𝑣 = 1} with
𝜀 = 0.05 and 𝛿 = 0.01. Then, from each circuit we chose 𝑞 gates with this
estimation closest to 1/2, and built the decomposition set 𝐵 = {�̃�1, . . . , �̃�2𝑞}
from the obtained variables. The considered SAT partitioning (denoted as 𝑞+𝑞)
is represented by all possible cubes �̃�𝛼1

1 ∧ · · · ∧ �̃�
𝛼2𝑞

2𝑞 . The experiments were
carried out for 𝑞 ∈ {4, 5, 6}.

In the context of all that has been said above, one of the main issues is the
accuracy of the resulting estimates of 𝐸[𝜉Π]. The main factor that negatively
affects the accuracy is the magnitude of 𝑉 𝑎𝑟(𝜉Π). The data in Table 2 implies
that the two proposed SAT partitioning constructions give a relatively small
standard deviation and, as a result, the resulting estimates are very accurate.

Moreover, as shown below, in order to obtain relatively accurate estimates
of 𝐸[𝜉Π], it is sufficient to use samples whose size is significantly smaller than the
total size of the considered SAT partitioning. The aforesaid is confirmed by the
experimental data shown in Fig. 3 and Fig. 4, which demonstrate the dependence
of the accuracy of the estimate of 𝐸[𝜉Π] on the size of the random sample.
In Fig. 3 we present the plot for partitioning of the set 𝑋𝑖𝑛 into triples (3-MAJ)
for Construction 1, and in Fig. 4 into balanced cubes (4+4) for Construction 2.
In both cases we used the LEC problem instance BvP9,4 and the solver CaDiCaL.

For each value of the size of random sample 𝑁 we generated 𝑃 = 1000
random samples of size 𝑁 and calculated the sample means (𝜉1, . . . , 𝜉𝑃), where
each 𝜉𝑟 = 1

𝑁

∑︀𝑁
𝑗=1 𝜉𝑗 , 𝑟 ∈ {1, . . . , 𝑃}. Additionally, we calculated the mean

of sample means Ξ(𝑁) = 1
𝑃

∑︀𝑃
𝑟=1 𝜉

𝑟, and also chose the minimal 𝑀*(𝑁) and
maximal 𝑀*(𝑁) values. Next, we normalized all values by dividing them by
𝐸[𝜉Π].

In Fig. 3 and Fig. 4 the horizontal axis shows the varying size of random
sample 𝑁 . For some values of 𝑁 , the corresponding distributions of sample
means are shown using boxplots. Additionally, the plots contain the following
normalized lines:

14

1 + ε

1 − ε

0.50

0.75

1.00

1.25

1.50

0 50 100 150 200

Sample size

N
or

m
al

iz
ed

 s
am

pl
e

m
ea

n max
mean
min

Figure 3: Distributions of sample means for different sample sizes 𝑁 on the
3-MAJ decomposition of BvP9,4 instance

1 + ε

1 − ε

0.50

0.75

1.00

1.25

1.50

0 50 100 150 200

Sample size

N
or

m
al

iz
ed

 s
am

pl
e

m
ea

n max
mean
min

Figure 4: Distributions of sample means for different sample sizes 𝑁 on the
decomposition into balanced cubes (4+4) of BvP9,4 instance

• Ξ(𝑁)/𝐸[𝜉Π] (blue line, middle);

• 𝑀*(𝑁)/𝐸[𝜉Π] (green line, bottom);

• 𝑀*(𝑁)/𝐸[𝜉Π] (orange line, top);

• (1 ± 𝜀) for 𝜀 = 0.1 (black dashed lines).

From the plots in Fig. 3–Fig. 4 it can be seen that on the considered class
of tests, the calculated sample mean 𝜉 gives a fairly accurate estimate of 𝐸[𝜉Π]
even when the sample size 𝑁 is significantly smaller than the total size of the
considered partitioning.

As mentioned above, problems from the considered class with input length
𝑛 = 𝑘 𝑙 = 40 are already extremely complex. However, problems BvP10,4 and
BvS10,4 were solved using five nodes (180 cores) of the computing cluster in

15

Table 3: Experimental results for solving decompositions on PvS10,4 instance
Dec.
type

Dec.
size

Sample
size Solver Avg. ± sd

time, s
Avg. ± sd
conflicts

Wall clock
time, s

2-XOR 1 048 576 10 000 Cadical 167 ± 57 1011 103 ± 240 103 —
10 000 Kissat 185 ± 64 1520 103 ± 393 103 —

3-MAJ 16 384 10 000 Cadical 5 103 ± 3 103 15 106 ± 7 106 —

4-BENT 1 024 1 024 Cadical 83 103 ± 48 103 111 106 ± 47 106 474 922
1 024 Kissat 30 103 ± 13 103 129 106 ± 43 106 171 182

6+6 4 096 4 096 Kissat 3 103 ± 19 103 10 106 ± 56 106 71 168

4+4 256 256 Kissat 26 103 ± 74 103 68 106 ± 59 106 37 606

reasonable time (as can be seen in Table 2). Since the obtained estimates of
hardness for PvS10,4 were significantly higher than for BvP10,4 and BvS10,4, we
used ten cluster nodes (360 cores), CaDiCaL and Kissat solvers to solve them
(Maple showed significantly worse results in previous experiments). Results are
shown in Table 3.

4.4 Experiments with unbalanced cubes
We emphasize that in Construction 2 we use cubes built from the most balanced
variables, hoping that the corresponding SAT partitioning will have a small
variance. And this hypothesis, as follows from Table 2, is generally confirmed.
Of interest is the question of what will happen if we build cubes using the most
unbalanced variables instead of balanced ones (i.e. unbalanced cubes)? On the
one hand, 𝑉 𝑎𝑟(𝜉Π) should be significantly higher, but, on the other hand, many
subproblems in the SAT partitioning can be extremely simple.

We have carried out the corresponding experiments. It turned out that when
using unbalanced cubes, in many cases even the CNF formulas �̃�𝛼1

1 ∧· · ·∧ �̃�
𝛼2𝑞

2𝑞 ∧
𝐶𝑓△ℎ are unsatisfiable, i.e. formulas that do not even include the term 𝐶(𝜇)
which encodes the miter. And the corresponding instances are easy for the SAT
solver. However, the final SAT partitioning will necessarily contain abnormally
hard formulas, the hardness of which is comparable with the hardness of SAT
for 𝐶𝑓△ℎ ∧ 𝐶(𝜇) (i.e. for the case without using partitioning).

Let us denote as 𝐺* such an abnormally hard cube. Using Chernoff bound,
we estimated the number of satisfying assignments of CNF formula 𝐺* ∧𝐶𝑓△ℎ.
We conducted several such experiments with hard cubes, and the typical case
is: for a hard cube 𝐺* of realistic size (say, ≤ 40) the estimation of the number
of satisfying assignments of formula 𝐺* ∧ 𝐶𝑓△ℎ was greater than 0.9 2𝑛 (with
tolerance 𝜀 = 0.01 and confidence level 1 − 𝛿 = 0.99, w.r.t. Chernoff bound,
𝑁 = 211933 was used). Thus, these results confirm the assumption put forward
above about a direct relationship between the number of satisfying assignments
of formula 𝐺 ∧ 𝐶𝑓△ℎ and the hardness of formula 𝐺 ∧ 𝐶𝑓△ℎ ∧ 𝐶(𝜇).

16

5 Conclusion
In this paper, we explored how to estimate the hardness of SAT encodings for
the Logical Equivalence Checking problem. One of our basic observations in this
context is that we can estimate the hardness of a SAT encoding of LEC using
some SAT partitioning. More specifically, we introduce the concept of hardness
of a SAT instance w.r.t. a SAT partitioning and a SAT solver 𝒪. We show
that such estimates can be constructed using probabilistic algorithms based on
the Monte Carlo method. The accuracy of this kind of estimates depends on
the probabilistic characteristics of a specially defined random variable which is
associated with a particular SAT partitioning. We propose two constructions
of SAT partitionings, in relation to which we present arguments for the good
accuracy of the obtained estimates of hardness. To carry out computational
experiments, we use a class of LEC instances, where circuits are represented
as And-Inverter Graphs which define various algorithms for sorting 𝑘 natural
numbers with bit length 𝑙. The hardness of such tests scales well due to the
selection of values 𝑘, 𝑙, and one can generate extremely hard LEC instances
already for circuits with 𝑛 = 𝑘 𝑙 = 40 inputs. In general, it is not possible
to accurately predict the running time of a consecutive SAT solver on some of
these tests. However, we estimate the hardness of such tests w.r.t. the proposed
SAT partitioning. The estimates obtained indicate that the corresponding LEC
instances can be solved in parallel using a reasonable amount of computational
resources. We confirm these conclusions and the accuracy of the estimates
obtained by solving the corresponding instances on a computing cluster. We
also formulate a hypothesis about a direct relationship between the hardness of
subproblems in the SAT partitioning and the number of satisfying assignments
of special satisfiable CNF formulas associated with the original Boolean circuits,
and we demonstrate that this hypothesis is true for circuits considered in our
experiments.

Future work may include the development of optimization algorithms similar
to ones described in [30, 35, 32] for finding cubes over auxiliary variables with
good statistical estimation of hardness of LEC w.r.t. the corresponding SAT
partitioning.

Acknowledgements
The research is supported by Huawei (grant TC20211213625).

References
[1] Arora, S., Barak, B.: Computational Complexity: A Modern Approach.

Cambridge University Press (2009)

[2] Balyo, T., Sanders, P., Sinz, C.: HordeSat: A massively parallel portfolio
SAT solver. In: SAT. pp. 156–172 (2015)

17

[3] Bessière, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit Complexity
and Decompositions of Global Constraints. In: IJCAI. pp. 412–418 (2009)

[4] Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model
checking using SAT procedures instead of BDDs. In: DAC. pp. 317–320
(1999)

[5] Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking
without BDDs. In: TACAS. pp. 193–207 (1999)

[6] Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Para-
cooba, Plingeling and Treengeling entering the SAT Competition 2020. In:
Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions. De-
partment of Computer Science Report Series B, vol. B-2020-1, pp. 51–53.
University of Helsinki (2020)

[7] Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185.
IOS Press (2009)

[8] Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength veri-
fication tool. In: Computer Aided Verification. pp. 24–40. Springer Berlin
Heidelberg, Berlin, Heidelberg (2010)

[9] Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation
C-35(8), 677–691 (1986)

[10] Chang, C.L., Lee, R.C.T.: Symbolic Logic and Mechanical Theorem Prov-
ing. Computer Science Classics, Academic Press (1973)

[11] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to
Algorithms. MIT Press, 3 edn. (2009)

[12] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

[13] Davis, M., Putnam, H.: A computing procedure for quantification theory.
J. ACM 7(3), 201–215 (1960)

[14] Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satis-
fiability of propositional horn formulae 1(3), 267–284 (1984)

[15] Drechsler, R., Junttila, T.A., Niemelä, I.: Non-Clausal SAT and ATPG.
In: Handbook of Satisfiability (2009)

[16] Feller, W.: An Introduction to probability theory and its applications,
vol. 2. John Wiley & Sons, Inc., 2 edn. (1971)

[17] Gates, W.H., Papadimitriou, C.H.: Bounds for sorting by prefix reversal
27(1), 47–57 (1979)

18

[18] Goldreich, O.: Computational Complexity: A Conceptual Perspective.
Cambridge University Press (2008)

[19] Gomes, C., Sabharwal, A.: Exploiting runtime variation in complete
solvers. In: Handbook of satisfiability. Frontiers in Artificial Intelligence
and Applications, vol. 185, pp. 271–288 (2009)

[20] Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer:
Guiding cdcl sat solvers by lookaheads. In: HVC. pp. 50–65 (2012)

[21] Hyvärinen, A.E.J.: Grid Based Propositional Satisfiability Solving (2011),
PhD thesis. Aalto University publication series

[22] Karp, R.M., Luby, M., Madras, N.: Monte-carlo approximation algorithms
for enumeration problems. Journal of Algorithms 10(3), 429–448 (1989)

[23] Kochemazov, S., Zaikin, O., Kondratiev, V., Semenov, A.:
MapleLCMDistChronoBT-DL, duplicate learnts heuristic-aided solvers at
the SAT Race 2019. In: Proceedings of SAT Race 2019. vol. B-2019-1,
p. 24 (2019)

[24] Kuehlmann, A., Krohm, F.: Equivalence checking using cuts and heaps.
In: DAC. pp. 263–268 (1997)

[25] Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT
solvers. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence
and Applications, vol. 185, pp. 131–153. IOS Press (2009)

[26] Metropolis, N., Ulam, S.: The Monte Carlo Method. J. Amer. Statistical
Assoc. 44(247), 335–341 (1949)

[27] Mishchenko, A., Chatterjee, S., Brayton, R.: Fraigs: A unifying represen-
tation for logic synthesis and verification. Tech. rep., Department of EECS,
University of California, Berkeley (2005)

[28] Molitor, P., Mohnke, J.: Equivalence Checking of Digital Circuits: Funda-
mentals, Principles, Methods. Kluwer Academic Publishers (2004)

[29] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Univer-
sity Press (1995)

[30] Semenov, A., Chivilikhin, D., Pavlenko, A., Otpuschennikov, I., Ulyant-
sev, V., Ignatiev, A.: Evaluating the Hardness of SAT Instances Using
Evolutionary Optimization Algorithms. In: 27th International Conference
on Principles and Practice of Constraint Programming. vol. 210, pp. 47:1–
47:18 (2021)

[31] Semenov, A., Otpuschennikov, I., Gribanova, I., Zaikin, O., Kochemazov,
S.: Translation of Algorithmic Descriptions of Discrete Functions to SAT
with Applications to Cryptanalysis Problems 16(1), 1–42 (2020)

19

[32] Semenov, A., Zaikin, O., Kochemazov, S.: Finding Effective SAT Parti-
tionings Via Black-Box Optimization, pp. 319–355 (2021), https://doi.
org/10.1007/978-3-030-66515-9_11

[33] Tokareva, N.: Bent Functions: Results and Applications to Cryptography.
Elsevier

[34] Tseyitin, G.S.: On the complexity of derivation in propositional calculus.
Studies in Constructive Mathematics and Mathematical Logic, Part II pp.
115–125 (1970)

[35] Zaikin, O.S., Kochemazov, S.E.: On black-box optimization in divide-and-
conquer sat solving. Optimization Methods and Software 36(4), 672–696
(2021), https://doi.org/10.1080/10556788.2019.1685993

20

https://doi.org/10.1007/978-3-030-66515-9_11
https://doi.org/10.1007/978-3-030-66515-9_11
https://doi.org/10.1080/10556788.2019.1685993

	1 Introduction
	2 Preliminaries
	2.1 Satisfiability and Boolean circuits
	2.2 SAT partitioning
	2.3 Background from probability theory

	3 Estimating the hardness of SAT encodings of LEC instances using SAT partitioning
	4 Experiments
	4.1 Considered tests
	4.2 Experimental setup and implementation details
	4.3 Main experimental results
	4.4 Experiments with unbalanced cubes

	5 Conclusion

